
The HTN Domain “Factories”

Malte Sönnichsen,1 Dominik Schreiber2

Karlsruhe Institute of Technology
1malte@soennichsen.xyz 2dominik.schreiber@kit.edu

Introduction
In this paper we present the benchmark domain “Factories”
for Hierarchical Task Network (HTN) planning written in
the HDDL format (Höller et al. 2020).

In this benchmark domain, the planning objective is to
construct a factory by satisfying a dependency graph on cer-
tain resources while using trucks to deliver the needed re-
sources from one place to another. As such, our domain is a
crossover of traditional logistics and transport domains with
a producer-consumer problem.

Overview
An input problem consists of f factories, d dependencies,
and t trucks. Each factory requires certain resources in order
to be built, which are the factory’s dependencies, and is able
to produce certain resources when built. As such, the prob-
lem’s factories depend on each another: The construction of
some factory F may require the construction of other facto-
ries which produce the resources necessary to construct F .
This renders the problem recursive and makes the choice of
a hierarchical planning model natural. The set of dependen-
cies can be seen as a Directed Acyclic Graph (DAG) induced
by the required and produced resources of each factory.

Transporting resources from a producer to a consumer re-
quires trucks. There can be multiple trucks in the problem,
so the tactical choice of which truck should do the delivery
can lead to varying plan lengths.

In order to avoid complex conditions, we introduced com-
posite resources which are fused from two other resources.
This way, a factory has at most one resource demand in the
HDDL while the number of needed actual resources can
be arbitrarily high. Also, for the sake of simplicity, the re-
sources a certain factory requires for its construction and for
producing a resource itself are identical.

Generating Problems
Our problem generator script features three inputs which are
(i) the number of factories, (ii) the maximum number of
resource dependencies per factory, and (iii) the number of
trucks. The graph of locations is generated as a simple undi-
rected circle of n locations with up to n additional random
edges, where n is set to twice the number of factories and

(:method m_factory_already_constructed
:parameters (?f - factory

?l - location)
:task (construct_factory ?f ?l)
:precondition (factory-at ?f ?l)
:subtasks ()

)
(:method m_construct_factory

:parameters (?f - factory
?r - resource
?l - location)

:task (construct_factory ?f ?l)
:precondition (and

(demands ?f ?r)
(location-free ?l)
(not (factory-constructed ?f))

)
:ordered-subtasks (and

(get_resource ?r ?l)
(construct ?f ?r ?l)

)
)

Figure 1: The two methods which decompose the initial task
(construct factory ?f ?l).

trucks. Trucks are placed randomly in the graph. Dependen-
cies are introduced to the problem by iterating over the facto-
ries “from left to right” and repeatedly adding dependencies
of the current factory to a resource that some factory to the
left produces. This ensures that the dependency graph is in
fact acyclic and can be ordered. The first factory has no re-
sources and the final factory is the destination object to be
constructed.

Properties
The Factories domain is recursive, i.e., it may feature task T
as a possible subtask in a method for task T . The domain is
totally ordered.

The domain makes use of positive and negative method
preconditions. All constraints are stated conjunctively
(“STRIPS-style”), i.e., as a list of literals.

We think the Factories domain is an appealing bench-



construct_factory ?factory ?location

m_factory_already_constructed m_construct_factory

get_resource ?resource ?location

m_resource_there m_get_resources_and_fuse

get_resource get_resource fuse

m_get_resource

construct_factory produce_resource ?factory ?resource

m_produce_resource

produce-without-demands

m_get_and_produce_resource

get_resource produce

deliver_resource ?resource ?l_start ?l_end

m_deliver_resource

goto ?truck ?location

m_already_there m_goto

move goto

pickup goto drop

construct

Figure 2: Illustration of the hierarchy of the Factories domain. Rectangles represent primitive tasks, circular containers represent
composite tasks, and blue rectangles with rounded corners represent methods. Dashed lines denote the choice (OR) of a method,
straight lines denote sequences (AND) of subtasks. Dotted arrows hint to recursive subtask relationships.

mark domain because it is a very natural application of hi-
erarchical planning and because the problem size is easily
scaleable up to dimensions which are very difficult for com-
mon HTN planners while the problem description stays rela-
tively compact. A problem’s properties can be steered using
the three input parameters: Increasing the number of trucks
makes grounding more difficult and produces higher num-
bers of methods per task. Conversely, increasing the number
of factories increases the overall size of the task network,
and increasing the number of dependencies makes the prob-
lem more “logically dense” while increasing the size of the
task network to a moderate degree.

With our simple problem generation, the non-trivial de-
cisions a planner has to make “only” involves the choice
of which trucks should deliver which resources and which
factory to place at which position; still, it is an inter-
esting domain to benchmark planners on because it tests
their ability to ground (if applicable) and search this quite
straight-forward hierarchical structure as efficiently as pos-
sible. Moreover, the resulting plan length may vary consider-
ably based on a planner’s strategic decisions regarding truck
assignments and factory placements, so we believe that the

domain lends itself to evaluations concerning plan quality
and plan optimization techniques.

Although heavily idealized, we imagine that our domain’s
structure can be adapted to a plethora of similar tasks that
feature DAG-like dependencies.

Acknowledgments
Many thanks to Gregor Behnke for finding, and proposing
fixes to, several bugs.

References
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An extension to
PDDL for expressing hierarchical planning problems. In
AAAI, 9883–9891.


