Mallob in the SAT Competition 2021

Dominik Schreiber
Institute of Theoretical Informatics
Karlsruhe Institute of Technology
Karlsruhe, Germany
dominik.schreiber @kit.edu

Abstract—We describe our contribution to the parallel and
cloud tracks of the SAT Competition 2021. Notable differences
over last year’s submission include additional diversification, a
simple kind of memory awareness, lock-free clause import in
Lingeling, and updated parametrization of clause sharing.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

After the great success of the distributed SAT solving
system named mallob-mono in the SAT Competition 2020 [1],
we submit a new version of this system with a number of
improvements to this year’s SAT Competition. We submit our
system not only to the cloud track but to the parallel track as
well in order to see how it compares to state-of-the-art shared
memory solvers at a smaller scale.

We decided to name our submission Mallob and omit the
suffix “-mono” which was meant to emphasize the mode of
operation where only one instance at a time is solved. Mallob
as a whole is capable of solving many instances at once and
performing decentralized malleable load balancing on top of
these jobs [2]. Furthermore, since last year, Mallob gained
promising new solver interfaces to CaDiCaL [3], Glucose [4],
and (work in progress) MergeSAT [5]. However, due to the
rules of the competition, we cannot make use of more than
one CDCL solver and can only solve one instance at a time. In
productive environments free of such constraints, our system
can reach better performance by employing a careful mix of
these solvers and by solving several instances in parallel.

II. SYSTEM AND SOLVER SETUP

The setup of our system remains mostly unchanged com-
pared to last year’s submission. We subdivide each physical
compute node into groups of four hardware threads each
and run one MPI process on each such group. Each MPI
process then runs four core solvers in parallel. We make use
of Lingeling and YalSAT [3] as last year with the same kind
of “native” diversification options.

We revisited the concurrent program code in Lingeling’s
solver interface and made the clause import lock-free by
introducing a concurrent lock-free ring buffer' instead of a
simple array guarded by a mutex. While the array used to
grow indefinitely if a solver did not import any clauses for a
long time, the size of the ring buffer is now limited to a small

Thttps://github.com/rmind/ringbuf

B o]
o oo

oo oo

Compute node 0

N
et

e

Compute node m — 1

Fig. 1. Architecture of Mallob in the cloud track [2]

multiple of the payload that may be shared each round, and if
the buffer is full, further incoming clauses are discarded.

As an experimental change, we introduce a new kind of
diversification based on permuting the input: With probability
p, a solver will randomly shuffle all clauses and the literals
within each clause. Preliminary experiments at a small scale
showed that performing this permutation in each solver is
detrimental to the overall performance, but we believe that
letting a small ratio of solvers operate on a permutation of
the input may provide different insights to the problem and
improve performance in large scale environments where all
native diversification options are exhausted. We set p = 0.03
which, in the cloud track with 1600 solver threads, leads to
an expected number of 48 “permuted solvers” and still leaves
the great majority of solvers running on the original problem.

III. MEMORY AWARENESS

Last year’s benchmarks featured a few very large instances
for which we experienced out-of-memory errors on the com-
pute nodes running Mallob. We introduce a simple kind of
memory awareness to alleviate this problem: As described in
[2], we limit the total number of literals (including clause
separation zeroes) which may be imported to the solver threads
of a particular MPI process. This measure provides a coarse
estimate on the memory the solver threads will use. If the input
size were to exceed this limit, the number of solver threads to
spawn is reduced such that either the import size is below the
limit or only a single thread remains. We allow a total import
size of 50 - 10° for each thread which we expect to prevent
most out-of-memory issues given that in both tracks 4 GB of
main memory are available per hardware thread.

IV. CLAUSE EXCHANGE

We repaired a subtle issue within the merging step of our
distributed clause aggregation scheme: In the set data structure



used for bookkeeping inserted clauses and for detecting dupli-
cate clauses, we did use a hash function which is insensitive
to the ordering of literals [6] but checked the equality of two
clauses in an order-sensitive manner. We made the equality
check order-insensitive as well such that our filtering during
aggregation should now reliably detect duplicates even if the
literals are ordered differently.

Based on large scale experiments [2] we adjusted the clause
sharing parameters of our system compared to last year’s
submission. We significantly increased the clause length limit
from five to 30: As our clause aggregation scheme only shares
the globally shortest clauses, we found that it is not particularly
harmful (but can rather be beneficial) to let individual solvers
export some longer clauses. Likewise, experiments indicated
that at the scale of the cloud track, it is beneficial to slightly
increase the overall volume of clauses which can be shared
compared to last year’s configuration. As a result, we increased
the clause buffer discount factor o from 0.75 to 0.9. In the
parallel track, we set o = 1 because we believe that employing
only 64 solvers on a single machine allows for even more
clauses to be shared with less of a penalty. This is the only
difference between our parallel track submission and our cloud
track submission.

ACKNOWLEDGMENT

The author expresses his heartfelt thanks to Armin Biere for
providing the core solvers of Mallob, and to Laurent Simon
and Armin Biere for allowing the use of Glucose and CaDiCaL
in the competition even though it was ultimately not possible
to make use of them.

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

European Research Council

Established by the European Commission

Evaluation of this work was partially performed on the su-
percomputer ForHLR funded by the Ministry of Science,
Research and the Arts Baden-Wiirttemberg and by the Federal
Ministry of Education and Research. The author gratefully
acknowledges the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing
computing time on the GCS Supercomputer SuperMUC-NG
at Leibniz Supercomputing Centre (www.lrz.de).

REFERENCES

[1] D. Schreiber, “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track,” in Proc. of SAT Competition, pp. 45-46,
2020.

[2] D. Schreiber and P. Sanders, “Scalable SAT solving in the cloud,” in
International Conference on Theory and Applications of Satisfiability
Testing, 2021. In review.

[3] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
entering the SAT competition 2018,” Proc. of SAT Competition, pp. 13—
14, 2018.

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Twenty-first International Joint Conference on Artificial
Intelligence, 2009.

[5] N. Manthey, “MergeSAT,” in Proc. of SAT Competition, pp. 40—41, 2020.

[6] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-
lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156—172, Springer, 2015.



