

Decentralized Online Scheduling of Malleable NP-hard Jobs

28th International European Conference on Parallel and Distributed Computing (Euro-Par '22)

Peter Sanders, Dominik Schreiber | August 24, 2022

www.kit.edu

https://doku.lrz.de/download/attachments/43320790/ image2019-11-15_12-48-5.png

Motivation: SAT Solving

Propositional Satisfiability (SAT)

Input: Propositional formula *F* (Boolean variables combined with AND, OR, NOT) **Task:** Find variable assignment s.t. *F* evaluates to true, or report that no such assignment exists

https://satcompetition.github.io/2022/logo2022-large.png

Motivation: SAT Solving

Propositional Satisfiability (SAT)

Input: Propositional formula *F* (Boolean variables combined with AND, OR, NOT) **Task:** Find variable assignment s.t. *F* evaluates to true, or report that no such assignment exists

- First problem proven NP-complete [Cook '71]
- Crucial buildling block for many applications

https://satcompetition.github.io/2022/logo2022-large.png

Malleability and SAT Solving: Why?

Particular parallelization

- Portfolio of sequential solvers with diverse search strategies
- All solvers work on the entire problem, exchange knowledge periodically
- Limited scalability (despite significant advancements!)

Malleability and SAT Solving: Why?

Particular parallelization

- Portfolio of sequential solvers with diverse search strategies
- All solvers work on the entire problem, exchange knowledge periodically
- Limited scalability (despite significant advancements!)

Unpredictability

Processing time unknown in advance

Malleability and SAT Solving: Why?

Particular parallelization

- Portfolio of sequential solvers with diverse search strategies
- All solvers work on the entire problem, exchange knowledge periodically
- Limited scalability (despite significant advancements!)

Unpredictability

Processing time unknown in advance

Simple malleability

- Add or remove solvers to/from computation at will
- No global redistribution of data necessary
- Relatively small job descriptions

Vision and Contributions

On-Demand Service Platform for NP-hard Problems

Prior work: [Schreiber & Sanders, SAT'21]

- General system architecture
- Preliminary protocols for malleable scheduling
- Focus on award-winning SAT solving engine

Vision and Contributions

On-Demand Service Platform for NP-hard Problems

Prior work: [Schreiber & Sanders, SAT'21]

- General system architecture
- Preliminary protocols for malleable scheduling
- Focus on award-winning SAT solving engine

New contributions:

- Fully scalable decentralized scheduling algorithms
- Practical implementation for $\approx 10^4$ cores
- Extensive evaluation of scheduling performance, quality

m distributed processes

• *m* distributed processes

- *m* distributed processes
- Worker: Context of certain job on certain process

- *m* distributed processes
- Worker: Context of certain job on certain process
- Per process: \leq 1 active worker (\leq *c* suspended)

- *m* distributed processes
- Worker: Context of certain job on certain process
- Per process: \leq 1 active worker (\leq *c* suspended)
- Processing and scheduling on the same cores!

- *m* distributed processes
- Worker: Context of certain job on certain process
- Per process: \leq 1 active worker (\leq *c* suspended)
- Processing and scheduling on the same cores!
- Active jobs J, n := |J|
- Properties of each job j:
 - Priority $p_j \in \mathbb{R}^+$
 - **Demand** of resources $d_j \in \mathbb{N}^+$
 - Wallclock or CPU budget $b_j \in \mathbb{R}^+$ (optional)

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met **or** all *m* processes are utilized.

$$(\forall j \in J : v_j = d_j) \qquad \lor \qquad \sum_{j \in J} v_j = m$$

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all *m* processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_i workers. $\forall j \in J : 1 \le v_i \le d_i$

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all *m* processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_j workers. $\forall j \in J : 1 \le v_j \le d_j$

(C3) The volume of each job *j* scales proportionally with p_j as far as (C2) allows.

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all *m* processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_j workers. $\forall j \in J : 1 \le v_j \le d_j$

(C3) The volume of each job *j* scales proportionally with p_j as far as (C2) allows.

Theorem

Solving the above problem on *m* processes for $n \le m$ jobs is possible in $\mathcal{O}(\log m)$ span.

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all m processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_j workers. $\forall j \in J : 1 \le v_j \le d_j$

(C3) The volume of each job *j* scales proportionally with p_j as far as (C2) allows.

Theorem

Solving the above problem on *m* processes for $n \le m$ jobs is possible in $\mathcal{O}(\log m)$ span.

Central Idea

• Express job volumes
$$v_j = v_j(\alpha) := \alpha p_j$$
, $\alpha \ge 0$

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all m processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_j workers. $\forall j \in J : 1 \le v_j \le d_j$

(C3) The volume of each job *j* scales proportionally with p_j as far as (C2) allows.

Theorem

Solving the above problem on *m* processes for $n \le m$ jobs is possible in $\mathcal{O}(\log m)$ span.

Central Idea

• Express job volumes
$$v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$$
, $\alpha \ge 0$

Volume Assignment Problem

Map each job $j \in J$ to a fair number of workers, the volume $v_j \in \mathbb{N}^+$, s.t.

(C1) All job demands are fully met or all m processes are utilized.

$$(\forall j \in J : v_j = d_j) \quad \forall \quad \sum_{j \in J} v_j = m$$

(C2) Each job has at least one worker and at most d_j workers. $\forall j \in J : 1 \le v_j \le d_j$

(C3) The volume of each job *j* scales proportionally with p_j as far as (C2) allows.

Theorem

Solving the above problem on *m* processes for $n \le m$ jobs is possible in $\mathcal{O}(\log m)$ span.

Central Idea

- Express job volumes $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Solve unused resources $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$ for $\xi(\alpha) = 0$

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

• Evaluate ξ in parallel* at all 2*n* values where ξ' changes

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$

• Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$

• Excess resources
$$\xi(\alpha) = m - \sum_{j \in J} v_j(\alpha)$$

- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$
- Round the $v_j(\hat{\alpha})$ to appropriate integers

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$
- **Round** the $v_j(\hat{\alpha})$ to appropriate integers
- *Parallel evaluation of ξ :
 - Compute ξ based on auxilliary terms R and P

Volume Assignment Algorithm

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$
- **Round** the $v_j(\hat{\alpha})$ to appropriate integers

*Parallel evaluation of ξ :

- Compute ξ based on auxilliary terms R and P
- Create, sort events which manipulate R and P

Volume Assignment Algorithm

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$
- **Round** the $v_j(\hat{\alpha})$ to appropriate integers

*Parallel evaluation of ξ :

- Compute ξ based on auxilliary terms *R* and *P*
- Create, sort events which manipulate R and P
- Compute all intermediate values of R, P with prefix sum

Volume Assignment Algorithm

- Job volumes $v_j = v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$, $\alpha \ge 0$
- Excess resources $\xi(\alpha) = m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ in parallel* at all 2*n* values where ξ' changes
- Interpolate value $\hat{\alpha}$ where $\xi(\hat{\alpha}) = 0$
- **Round** the $v_j(\hat{\alpha})$ to appropriate integers

*Parallel evaluation of ξ :

- Compute ξ based on auxilliary terms *R* and *P*
- Create, sort events which manipulate R and P
- Compute all intermediate values of R, P with prefix sum

All-reductions, prefix sums, sorting $\mathcal{O}(m)$ elements: **Possible in** $\mathcal{O}(\log m)$ **time** [Ajtai, Komlós, Szemerédi '83]

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

From Volumes to Scheduling

Each job *j* receives *v_j* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

Each job *j* receives *v_i* processes. Which processes?

From Volumes to Scheduling

Each job *j* receives *v_j* processes. Which processes?

Matching Requests and Idle Processes

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Collective Matching

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Collective Matching

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Collective Matching

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Collective Matching

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{ Deliberately leave some processes idle} \\ \mbox{ OR risk high scheduling latencies } \end{cases}$

Collective Matching

Random walks [Schreiber & Sanders, SAT'21]

 $\Rightarrow \mbox{Deliberately leave some processes idle} \\ \mbox{OR risk high scheduling latencies} \\$

Collective Matching

Implemented: Route requests along tree Theory: $O(\log m)$ span via prefix sums

Reusing Suspended Workers

Naïve scheduling

Reusing Suspended Workers

Naïve scheduling

Naïve scheduling

Naïve scheduling

Naïve scheduling

Idle procs. can be seized by other jobs

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

Improvements

• Workers transitively remember past children

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

Improvements

• Workers transitively remember past children

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

Improvements

• Workers transitively remember past children

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

- Workers transitively remember past children
- Idle processes prefer to reactivate past child

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

- Workers transitively remember past children
- Idle processes prefer to reactivate past child

Naïve scheduling

- Idle procs. can be seized by other jobs
- Jobs can re-grow differently after shrinking

- Workers transitively remember past children
- Idle processes prefer to reactivate past child

Evaluation: Context

The story thus far: Malleable SAT solving is effective & efficient [Schreiber & Sanders, SAT'21]

- Decent SAT solving performance if job volumes fluctuate
- Lower response times with malleability than solving each formula at fixed, small scale
- Better resource efficiency than sequentially scheduling massively parallel SAT solver

Evaluation: Context

The story thus far: Malleable SAT solving is effective & efficient [Schreiber & Sanders, SAT'21]

- Decent SAT solving performance if job volumes fluctuate
- Lower response times with malleability than solving each formula at fixed, small scale
- Better resource efficiency than sequentially scheduling massively parallel SAT solver

Now: Performance and quality of our scheduling

Karlsruhe Institute of Technology

Evaluation: Setup

Environment

 $\begin{array}{l} \mbox{SuperMUC-NG (#26 @ TOP500 '22)} \\ \le 128 \mbox{ nodes } \times \mbox{ 48 cores } @ 2.7 \mbox{ GHz} \\ \mbox{ SuSE Linux Enterprise Server} \end{array}$

Evaluation: Setup

Environment

 $\begin{array}{l} \mbox{SuperMUC-NG (#26 @ TOP500 '22)} \\ \le 128 \mbox{ nodes } \times \mbox{ 48 cores } @ 2.7 \mbox{ GHz} \\ \mbox{ SuSE Linux Enterprise Server} \end{array}$

Implementation

C++17 with MPI + multi-threading; simplified volume calc.

Evaluation: Setup

Environment

 $\begin{array}{l} \mbox{SuperMUC-NG (#26 @ TOP500 '22)} \\ \le 128 \mbox{ nodes } \times \mbox{ 48 cores } @ 2.7 \mbox{ GHz} \\ \mbox{ SuSE Linux Enterprise Server} \end{array}$

Implementation

C++17 with MPI + multi-threading; simplified volume calc. Inputs

400 instances from Int. SAT Competition 2020

Efficiency for Uniform Jobs

Setup: 1536 processes \times four cores **Scenario**: *x* jobs in parallel with fixed CPU limit

Efficiency for Uniform Jobs

Efficiency: >96% for reasonable loads

parallel jobs

Impact of Job Priorities

Setup: 384 processes \times four cores Scenario: 9 "clients" introducing jobs sequentially

Impact of Job Priorities

Realistic Arrival Rates: Overview

Setup: 1536 processes \times four cores **Scenario:** random arrival of ISC20 jobs with random demands, priorities, time limits

Realistic Arrival Rates: Overview

300 Active jobs 200 **Setup**: 1536 processes \times four cores 100 Scenario: random arrival of ISC20 jobs 0 600 2400 3000 with random demands, priorities, time limits 0 1200 1800 3600 Elapsed time [s] t 1 966.0 966.0 966.0 966.0 966.0 966.0 Processes j₁ jз j4 Ĵ2 0.996 0.995 600 2400 3000 3600 1200 1800 Elapsed time [s]

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Average Latencies

 \approx 10 ms for scheduling 1st worker \approx 1 ms for calculating fair volumes \approx 6 ms for doubling a job's size

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Average Latencies

 \approx 10 ms for scheduling 1st worker \approx 1 ms for calculating fair volumes \approx 6 ms for doubling a job's size

Stability of Scheduling

How many more workers are created than strictly necessary for each job?

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Average Latencies

 \approx 10 ms for scheduling 1st worker \approx 1 ms for calculating fair volumes \approx 6 ms for doubling a job's size

Stability of Scheduling

How many more workers are created than strictly necessary for each job?

Median: $40\% \Rightarrow 25\%$

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Average Latencies

 \approx 10 ms for scheduling 1st worker \approx 1 ms for calculating fair volumes \approx 6 ms for doubling a job's size

Stability of Scheduling

How many more workers are created than strictly necessary for each job?

Median: $40\% \Rightarrow 25\%$

How probable is it that any given worker w_j^i has been initialized only once?

Request matching strategies:

- Random walks [Schreiber & Sanders, SAT'21]
- Collective matching along tree of processes

Average Latencies

 \approx 10 ms for scheduling 1st worker \approx 1 ms for calculating fair volumes \approx 6 ms for doubling a job's size

Stability of Scheduling

How many more workers are created than strictly necessary for each job?

Median: $40\% \Rightarrow 25\%$

How probable is it that any given worker w_j^i has been initialized only once?

89%

18/18 2022-08-24 Sanders, Schreiber: Decentralized Malleable Online Scheduling

ITI Sanders

Conclusion

Recap

- Decentralized online scheduling of malleable jobs with priorities, demands, unknown processing time
- Theory: Scalable algorithms with logarithmic span
- Experiments (6144 c.): Scheduling delays in range of milliseconds, near-optimal utilization

Future work

- Integration of further applications (k-Means clustering, hierarchical planning)
- Fault tolerance, heterogeneous systems
- Better handling of fractional resources

Many thanks to all reviewers!

Certified Euro-Par Artifact

deployment

docker

aws

Published at Journal of Open Source Software

Collective operations with $O(\log m)$ span / depth:

■ All-reduction – e.g., broadcast value, compute maximum

$$(7)$$
 (-1) (11) (3) (25) (2) (-8)

Karlsruhe Institute of Technology

Volume Assignment: Prerequisites

Collective operations with $O(\log m)$ span / depth:

All-reduction – e.g., broadcast value, compute maximum

Collective operations with $O(\log m)$ span / depth:

All-reduction – e.g., broadcast value, compute maximum

• Sorting $\mathcal{O}(m)$ scattered elements [Ajtai, Komlós, Szemerédi '83] 7
-1
11
3
25
2
-8

Collective operations with $O(\log m)$ span / depth:

All-reduction – e.g., broadcast value, compute maximum

Sorting O(m) scattered elements [Ajtai, Komlós, Szemerédi '83]

Collective operations with $O(\log m)$ span / depth:

■ All-reduction – e.g., broadcast value, compute maximum

Sorting O(m) scattered elements [Ajtai, Komlós, Szemerédi '83]

$$\begin{array}{c|c} 7 \\ -8 \\ -8 \end{array} \begin{array}{c} -1 \\ -1 \end{array} \begin{array}{c} 11 \\ 2 \\ -1 \end{array} \begin{array}{c} 3 \\ -3 \end{array} \begin{array}{c} 25 \\ 7 \\ -7 \end{array} \begin{array}{c} 2 \\ 11 \\ 2 \end{array} \begin{array}{c} -8 \\ 25 \\ -7 \end{array}$$

Prefix sum (or "Scan")

$$(7)$$
 (-1) (11) (3) (25) (2) (-8)

Collective operations with $O(\log m)$ span / depth:

■ All-reduction – e.g., broadcast value, compute maximum

Sorting O(m) scattered elements [Ajtai, Komlós, Szemerédi '83]

Prefix sum (or "Scan")

Collective operations with $O(\log m)$ span / depth:

All-reduction – e.g., broadcast value, compute maximum

Sorting O(m) scattered elements [Ajtai, Komlós, Szemerédi '83]

Prefix sum (or "Scan")

$$\begin{array}{c} 7 + -1 + 11 + 3 \\ 7 & 6 & 17 = 20 \end{array} \begin{array}{c} 25 & 2 \\ 45 & 47 \end{array} \begin{array}{c} -8 \\ 39 \end{array}$$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \alpha p_j$ for $\alpha \in \mathbb{R}^+_0$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$
- **Evaluate** ξ at all 2*n* values where its gradient changes

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{i \in J} v_i(\alpha)$
- Evaluate ξ at all 2*n* values where its gradient changes
- **Interpolate** value $\hat{\alpha}$ where ξ changes its sign

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ at all 2*n* values where its gradient changes
- **Interpolate** value $\hat{\alpha}$ where ξ changes its sign

- *m* processes, $n \leq m$ jobs
- Each job is represented by one particular process
- Parametrize $v_j = v_j(\alpha) := \max(1, \min(d_j, \alpha p_j))$ for $\alpha \in \mathbb{R}_0^+$
- Express unused resources as $\xi(\alpha) := m \sum_{j \in J} v_j(\alpha)$
- Evaluate ξ at all 2*n* values where its gradient changes
- **Interpolate** value $\hat{\alpha}$ where ξ changes its sign
- **Round** the $v_j(\hat{\alpha})$ to appropriate integers

Karlsruhe Institute of Technology

Volume Assignment (2/2)

Evaluate excess function ξ at all 2*n* points of interest **in parallel**:

• Alternative formulation: $\xi(\alpha) = m - R - \alpha P$

 $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$

Evaluate excess function ξ at all 2*n* points of interest **in parallel**:

• Alternative formulation: $\xi(\alpha) = m - R - \alpha P$

 $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$

Evaluate excess function ξ at all 2*n* points of interest **in parallel**:

• Alternative formulation: $\xi(\alpha) = m - R - \alpha P$

 $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$

- Alternative formulation: $\xi(\alpha) = m R \alpha P$
 - $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$
- Express 2n points as events manipulating R, P

- Alternative formulation: $\xi(\alpha) = m R \alpha P$
 - $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$
- Express 2n points as events manipulating R, P
- Sort events in parallel
- Compute **prefix sum** (*R*_{≤e}, *P*_{≤e}) over sorted events *e*

- Alternative formulation: $\xi(\alpha) = m R \alpha P$
 - $R = \sum_{j:\alpha p_j < 1} 1 + \sum_{j:\alpha p_j > d_j} P = \sum_{j:1 \le \alpha p_j \le d_j} p_j$
- Express 2n points as events manipulating R, P
- Sort events in parallel
- Compute **prefix sum** $(R_{\leq e}, P_{\leq e})$ over sorted events *e*
- Evaluate $\xi(e) = m (n + R_{\leq e}) e P_{\leq e}$

 $m = 7 \qquad \begin{array}{ccccc} p_{4} = 1 & p_{3} = 2 & p_{1} = 10 & p_{2} = 3 \\ d_{4} = 2 & d_{3} = 10 & d_{1} = 2 & d_{2} = 5 \\ \hline j_{4} & \bigcirc & j_{3} & \bigcirc & j_{1} & j_{2} \\ \text{Local job?} & 1 & 0 & 1 & 0 \\ \end{array} \qquad \begin{array}{c} p_{3} = 2 & p_{1} = 10 & p_{2} = 3 \\ d_{1} = 2 & d_{2} = 5 & v_{j}(\alpha) \\ \hline j_{1} & j_{2} & \bigcirc & \xi(\alpha) = m - \sum_{j} v_{j}(\alpha) \end{array}$

$$v_j(\alpha) = \max(1, \min(d_j, \alpha p_j))$$

$$\xi(\alpha) = m - \sum_j v_j(\alpha)$$

$$= m - R - \alpha P$$

$$R = \sum_{j:\alpha p_j \le 1} 1 + \sum_{j:\alpha p_j \ge d_j} d_j$$
$$P = \sum_{j:1 < \alpha p_j < d_j} p_j$$

Mallob: Technology Stack

Realistic Arrival Rates: Worker Reuse

	Workers created Workers required				
Worker reuse stategy	median	max.	total		
None	1.43	33.0	2.14		
Basic [Schreiber & Sanders, SAT'21]	1.40	31.5	2.07		
Ours	1.25	24.5	1.80		

Realistic Arrival Rates: Worker Reuse

	Workers created Workers required			Pr [Worker created at $\leq X$ processes]					
Worker reuse stategy	median	max.	total	1	2	5	10	25	
None	1.43	33.0	2.14	0.87	0.90	0.94	0.97	0.992	
Basic [Schreiber & Sanders, SAT'21]	1.40	31.5	2.07	0.87	0.90	0.94	0.97	0.993	
Ours	1.25	24.5	1.80	0.89	0.91	0.94	0.97	0.993	

Realistic Arrival Rates: Worker Reuse

	Workers created Workers required			$\Pr[\text{Worker created at} \le X \text{ processes}]$					
Worker reuse stategy	median	max.	total	1	2	5	10	25	
None	1.43	33.0	2.14	0.87	0.90	0.94	0.97	0.992	
Basic [Schreiber & Sanders, SAT'21]	1.40	31.5	2.07	0.87	0.90	0.94	0.97	0.993	
Ours	1.25	24.5	1.80	0.89	0.91	0.94	0.97	0.993	

 \Rightarrow Most workers (\approx 90%) are initialized only once