
A Sweepline Algorithm for Calculating the
Isolation of Mountains

Bachelor’s Thesis of

Nicolai Hüning

at the Department of Informatics
Institute of Theoretical Informatics, Algorithm Engineering (ITI)

Reviewer: Prof. Peter Sanders
Second reviewer: Prof. Thomas Bläsius
Advisor: M.Sc. Daniel Funke

30. Juli 2022 – 30. November 2022



I declare that I have developed and written the enclosed thesis completely by myself, and have
not used sources or means without declaration in the text.

PLACE, DATE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Nicolai Hüning)



Abstract

The isolation is an important metric for the classification of mountain peaks. It specifies the
distance between a peak and the closest point to the peak with the same elevation. The closest
point is called the Isolation Limit Point (ILP).
In this thesis a sweepline algorithm to calculate the isolation for all peaks with the help of

Digital Elevation Models (DEMs) is developed. The work builds upon the approach by Kirmse
and de Ferrante [10], who developed a 𝑂 (𝑛2) algorithm for the isolation calculation to prepare
for the more cost intensive prominence calculation.
DEM-Data is a format to store elevation data of the earth or other planets. The elevation

data is stored on a grid which is divided into tiles of one latitude times one longitude. With
this approach the DEM-data contains a 3D representation of a planet.
The algorithm developed for this thesis is divided in two phases, where one phase always

works on one DEM-Tile at a time. During the first phase potential peaks are calculated with
the help of a simple heuristic and after this an upper bound for the isolation is found. With the
help of this upper bound the peak is now linked with tiles that could theoretically contain an
ILP. During the second phase the Isolation Witness Points are calculated within every linked
tile. The ILP with the shortest distance to the peak is now the global ILP and the distance to
this global ILP is the isolation of the peak. With this approach the isolation for every peak is
calculated in one run of the algorithm.
To calculate an ILP a sweepline approach is used which goes down the contour line of the

DEM-Model withing one tile. With this concept the 3D-Search for the nearest point with the
same elevation is now reduced to a 2D-Search in the contour-line-plane of the peak.
The two phases are then parallized by running calculations parallel per tile in one phase.

This results in a very fast approach to calculate the isolation for all mountain peaks of a planet.
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Zusammenfassung

Zur Klassifizierung von Berggipfeln ist die Dominanz, manchmal auch Isolation genannt, eine
wichtige Metrik. Sie gibt für einen Gipfel den Abstand zum nächsten Punk eines anderen Berges
an, den Dominanz-Zeugen, welcher die gleiche Höhe hat wie der Gipfel.

In dieser Arbeit wird ein Sweepline Algorithmus zur Berechnung der Dominanz mithilfe von
DEM-Daten entwickelt. Dabei wird an die Arbeit von Kirmse und de Ferranti [10] angeknüpft,
welche einen einfachen O(𝑛2) Algorithmus zur Berechnung der Dominanz verwenden um
damit die kosten-intensivere Prominenzberechnung vorzubereiten.

DEM-Daten sind ein Format um Höhendaten der Erde, oder anderer Planeten zu speichern.
Dabei wird eine Repräsentation des Planeten in 3D erzeugt indem, Höhendaten mithilfe eines
Gitters gespeichert werden. Diese Gitter sind in Kacheln, von meist einem Längengrad mal
einem Breitengrad, aufgeteilt.

Der in dieser Arbeit entwickelte Algorithmus ist in zwei Phasen aufgeteilt, wobei eine Phase
immer auf einzelnen DEM-Kacheln ausgeführt wird. In der ersten Phase werden potentielle
Berggipfel mithilfe einer einfachen Heuristik berechnet und anschließend eine obere Schranke
für die Dominanz bestimmt. Mithilfe der oberen Schranke kann nun der Gipfel auf Kacheln
verteilt werden, welche potentiell einen Dominanz-Zeugen enthalten können. In Phase zwei
werden dann die Dominanz-Zeugen innerhalb der Kacheln für diese Gipfel bestimmt und die
Ergebnisse zum Schluss zusammengeführt. Damit wird in einem Durchlauf die Dominanz für
alle Berggipfel bestimmt.

Zur Berechnung des Dominanz-Zeugen wird ein Sweepline-Ansatz verwendet, welcher die
Höhenlinien des DEM-Models abtastet und damit die 3D-Suche, nach dem nächst höheren
Punkt, auf eine 2D-Suche, nach dem nächsten Punkt in derselben Höhenlinie, reduziert.

Die einzelnen Phasen werden in dieser Arbeit parallelisiert, indem Berechnungen innerhalb
einer Phase für einzelne Kacheln parallel ausgeführt werden. Daraus resultiert ein sehr schneller
Algorithmus zur Berechnung der Dominanz aller Berggipfel eines Planeten.
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1 Introduction

The isolation of a mountain is the distance along the surface to the nearest point with a higher
elevation for a given mountain peak (called the isolation limit point (ILP)). This is an important
metric for mountain classification. Mr. Peter Grimm, for example, used in his book “Ansichten,
Systematiken und Methoden zur Einteilung der Alpen” (Views, Systematics and Methods for
the Classification of the Alps) [7] the prominence and especially the isolation to define and
create a tier-list for mountains. The problem of mountain identification is however not quite
easy to answer, since in real world scenarios a lot of factors, like the view from the valley and
more, are used to define a peak as mountain. The work “What is a mountain?” by Peter Fisher
and Jo Wood (1998) [3] deals with that question in a humorous way.

A mountain with high isolation is especially interesting for climbers, because it specifies the
remoteness of a mountain peak. However, since the isolation is just the distance to the nearest
point with the same elevation, remote islands with just a few metres of elevation can have a
very big isolation.

A Digital Elevation Model, or DEM, is a way to represent the surface of the earth in a digital
and manageable form factor. With the help of these DEMs a lot of manual classification work
can be automated.

1.1 Motivation

While hiking in the beautiful Alps the question appeared how interesting metrics—like promi-
nence or isolation—of mountains could be efficiently calculated with the help of DEMs.

Since the surface of our earth is rather static, the question arises why an efficient algorithm
for such metrics would be necessary. However, as the measurement techniques to create DEMs
of our earth get more evolved, higher resolution DEMs are built. For example the data from
the TanDEM-X mission has a 7.5 times higher resolution compared to the data from the SRTM,
which is used for testing in this work. With increasing accuracy faster algorithms are required
to get a solution in reasonable time.

It could also be interesting to get this kind of metrics for other planets. There are for example
efforts to create a full DEM of Mars [8].

1.2 Contribution

This solution for calculating the isolation builds on the work of Andrew Kirmse and Jonathan
de Ferranti [10] (source code [11]). They developed a solution to calculate the prominence and
isolation for every mountain with the help of Digital Elevation Models (DEM). The special focus
of that work however lies on the more difficult task of calculating the prominence of mountains.
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1 Introduction

The isolation is used as a first step to get more viable candidates of peaks for the prominence
calculation. Because of that the isolation algorithm is a rather simple 𝑂 (𝑛2) approach, with a
few performance optimisations and very poor multithreading capabilities (Cf. figure 4.1).

In this work a more sophisticated approach is developed to calculating the isolation for every
mountain in a DEM. It uses a sweepline / scanline approach at its core to get results with a
time complexity of 𝑁 log(𝑁 ).

1.3 Outline

In Chapter 2 the DEM data model is introduced followed by a brief overview of work in similar
areas. This chapter concludes with a short introduction in few basic mathematical concepts
mostly concerning spherical calculus.

Chapter 3 explains the algorithm, for calculating the isolation for every mountain, developed
for this thesis. In this chapter first a top level overview of the algorithm is presented, followed
by a deeper explanation of the different data structures and phases.

The performance and results of the developed algorithm is then evaluated in Chapter 4.
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2 Background

2.1 Digital Elevation Models

Digital Elevation Models or DEMs have become one of the most important tools to analyze
the earths surface. They represent the earth in 3D by providing elevation-measurements on a
grid. The grid is mostly stored as files of 1 square degree of coverage, called a tile. Each tile is
uniformly divided into a square-grid of elevation measurements. A tile is represented by its
smallest latitude and longitude. For example tile (1◦,−3◦), which is the same as (1◦𝑁, 3◦𝑊 )
C.f. Section 2.3, would cover the area between 1◦, 2◦ latitude and −3◦, −2◦ longitude.
The resolution of DEMs is given by the length of one sample at the equator in arcseconds

[10, Chapter 2.1].
The data used in this work comes from viewfinderpanoramas.org [2]. The main source of

that data set is from the Shuttle Radar Topography Mission (SRTM) which started in 2011
[9]. The SRTM data covers the earth between latitude 60◦𝑁 and 59◦𝑆 with a resolution of 3
arcseconds (about 90m at the equator). For the US a 1 arcsecond SRTM resolution is available
as well.
The problem with the data from the SRTM project is that it does not cover the complete

globe and contains rather big voids especially in mountainous regions (cf. fig. 2.1). Because
of that the author of the viewfinderpanoramas data set uses different sources to complete the
dataset. The Antarctica for example comes from the Radarset Antarctic Mapping Project [1]
and most of the voids where filled with the help of the Advanced Spaceborne Thermal Emission
and Reflection Radiometer global DEM (ASTER GDEM) [10, P 791]. With this the 3 arcsecond
DEM data has a nearly complete coverage of the globe, whereas the 1 arcsecond dataset is
incomplete.

The accuracy of the data mostly depends on the SRTM data’s accuracy. There, the absolute
vertical height error is not more than 16𝑚 for 90% of the data [14].

The data from the ESA TanDEM-X mission would be interesting as well. This data covers
the entire globe with a 0.4 arcsecond coverage (approx. 12𝑚). Unfortunately this data is not
easily accessible like the data from the SRTM mission, thus efforts to get access to this data
failed for this project.

2.2 Related work

The first attempts of automated mountain classifications were conducted by the Research
Institute US Army Topography Engineering in 1993 [6]. There the authors tried to replace the
labour intensive work of manual classification of terrains in Mount, Plain, Basin and Flat with
computer algorithms. The data used in this paper comes from the USGS typography mission,
which used aerial photographs to create a DEM of the US [12].
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2 Background

Figure 2.1: Comparison tile 46◦𝑁 10◦𝐸. Left raw data from Nasa with voids, right modified data
by viewfindpanoramas.org.

In “What is a mountain?” by Peter Fish and Jo Wood [3] mountains are defined with a fuzzy
concept, because the same terrain can belong to different landforms based on the scale of
the DEM. With this concept the same authors created an algorithm which analyzes DEMs on
different scales and classified each DEM pixel in Pass, Pit, Plane, Ridge, Channel and Peak [4].
With these attributes a multi scale fuzzy value is calculated that describes the peakness of a
given DEM pixel neighbourhood.

Another more modern heuristic method to define mountains using deep learning is described
in Torres at al. (2018) [16]. Here the authors train a deep neural network with the help of a
gold standard data set, which is based on multiple sources, to identify mountain summits.
All of these methods try to approximate the definition of mountain by using extra free

parameters like the resolution of a DEM. Another approach is to define mountains by their
objective metrics, like prominence and isolation.

Using this approach Kirmse and de Ferranti [10] developed a method to find the prominence
and isolation of every mountain with the help of DEM data. They used a brute force approach
for calculating the isolation, where they start a search for the closest higher sample for every
peak in concentric circles around that peak. To calculate the prominence they converted each
DEM tile to a tree data structure where peaks and saddles are node [10, P. 794] and used this
structure to find the highest saddle between two peaks, and with that the prominence of a
peak.

Nahime, Milani and Fraternali (2018) [15] conducted comparison of most of these approaches
where they came to the conclusion that the methods using prominence and isolation have the
most accurate results for mountain identification.

2.3 Basic Mathematical Concepts

This section should give a short overview over the terms and some basic mathematical concepts
used in this thesis.
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2 Background

Since planets are often approximated by spheres, a lot of calculations on the sphere surface
take place. The geographic coordinate system is used, where points are given in latitude and
longitude. The latitude is given as an angle between 0◦ and 90◦ from the equator in the north
or south direction and the longitude from 0◦ to 180◦ east, west in respect to the meridian. We
will also use the notation where the south and west values are given in negative degrees. So
the point (20◦𝑆, 90◦𝑊 ) can also be written as (−20◦,−90◦).

On the sphere surface great circles correspond to strait lines in the euclidean space. Because
of that there are always at least two great circle segments as strait lines between two points on
the sphere surface. The smallest great circle segment between two points is called the geodesic.
If the points are at polar ends of the sphere there exists an infinite amount of geodesics between
them.
The following formula is used to calculate the length of the geodesic for points (𝜆1, 𝜙1),

(𝜆2, 𝜙2) and radius 𝑅.

𝑎 = sin2
(
𝜙2 − 𝜙1

2

)
+ sin2

(
𝜆1 − 𝜆2

2

)
cos(𝜆1) cos(𝜆2) (2.1)

distance = 𝑅 tan−1
( √

𝑎√︁
(1 − 𝑎)

)
The earth and most other planets aren’t perfect spheres. Because of this if a more accurate

distance is necessary, the distance is calculated with formula (2.2) which approximates the
planet with the help of an ellipsoid.

d𝜆 := (𝜆2 − 𝜆1)/2 d𝜙 := (𝜙2 − 𝜙1)/2 (2.2)
Λ = (𝜆2 + 𝜆1)/2
𝑠 = sin2 d𝜙 · cos2 d𝜆 + cos2 Λ · sin2 d𝜆
𝑐 = cos2 d𝜙 · cos2 d𝜆 + sin2 Λ · sin2 d𝜆
𝑤 = tan−1(

√
𝑠/
√
𝑐)

𝑟 =

√
𝑠𝑐

𝑤

distance = 2𝑎𝑤
(
1 + 𝑓 3𝑟 − 1

2𝑐 sin2 Λ · cos2 d𝜙 − 𝑓 3𝑟 + 1
2𝑐 sin2 Λ · sin2 d𝜙 · cos2 Λ

)
𝑟 and 𝑓 are the equatorial radius and flattening of the World Geodetic System (WDS) [10].
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3 Algorithm

The algorithm developed for this thesis builds upon the work of Andrew Kirmse and Jonathan
de Ferranti [10]. They published there algorithmic approach to calculate the isolation for every
mountain called “mountains” [11] on GitHub under the MIT licence. Because of this we can use
basic functions and structures, like tiles, loading the tiles, calculating the length of geodesics
between two points, finding potential peaks and more, and concentrate on developing the
algorithm to calculate isolations quickly.

To do this we need to find the closest point with higher elevation, the Isolation Limit Point
(ILP), for every peak and then calculate the distance between the peak and its ILP. We use a
isolation threshold to filter out insignificant peaks. To find the ILP we divide the algorithm in
two phases where each phase works on just one tile at a time.

Setup and Linking Phase During this phase the peaks are calculated, using the algorithm of
Kirmse and de Ferranti. Afterwards a local ILP in the same tile as the peak is found using the
sweepline approach described in Section 3.1. Such a local ILP exists for every peak that is not
the highest peak in the tile because, for example, the ILP for the second highest peak would
be one the slope of the highest. If we find a local ILP the distance between the peak and the
local ILP serves as an upper bound, because neighbouring tiles could contain a closer one, if
for example the peak is close to the edge of the tile. Because of that the peak is now linked
with tiles which could contain a closer ILP. A tile could contain a closer ILP for a peak if the
shortest distance to the tile is smaller than the upper bound and the maximum elevation of the
tile is bigger than the elevation of the peak. If we do not find an ILP for a peak, in the tile of
the peak, we first search for the closest tile that contains points with bigger elevation and use
the maximum distance to this tile as the upper bound for the isolation. It is also possible that
during this phase peaks at the corner of the tile are discovered which belong to the slope of a
mountain peak in the neighbouring tile. This however is not a problem since during the next
phase these falsely identified peaks will have an isolation below the threshold. For the linking
step and in order to find the closest tile the ILP Search Area Tree described in Section 3.3 is
used.

Exact calculation Phase Afterwards the second phase starts. During this phase the linked
peaks for a tile are used to calculate a tile-local ILP where now it is guaranteed that such an
ILP exists. To calculate the ILP the same sweepline approach described in Section 3.1 is used
as in the Setup and Linking Phase. The result of this is, that one peak can now have multiple
possible ILPs in different tiles. The ILP with the minimum distance to the peak is now the
global ILP and the distance is the isolation of the peak.

6



3 Algorithm

We can optimize the Setup and Linking Phase by reducing the resolution of the DEM, because
we are just interested in an upper bound. If we find an upper bound that is shorter than the
isolation threshold the peak can be ignored for the rest of the algorithm. This reduces the
amount of ILP-searches during the Exact calculation Phase of the Algorithm.

Both phases work on one tile at a time and the results within a phase for a tile are independent
to other tiles in the same phase. This makes the phases easily parallelizable by using a Thread
Pool with one thread per tile. Just the ILP Search Area Tree needs to be implemented with
multi threading in mind, because multiple threads can try to link peaks to one tile at the same
time, causing a potential race condition.

3.1 The Sweepline

The sweepline is designed to sweep from the highest elevation in one tile down the contour of
the elevation model. If the sweepline reaches the elevation of a peak it contains all points that
correspond to the contour line for its elevation. For a continuous model this would mean that
the sweepline includes all points that are on the same elevation as the peak. Since DEM-Data is
not a continuous model also points with slightly higher elevation could represent a part of the
contour line. To illustrate this we can model the discrete DEM-Data as a Voxel, where every
DEM-Pixel is a cube with the grid dimension in x and y direction and the elevation value as z.
In this illustration all cubes are in the sweepline where on the elevation of the sweepline-state,
one of the side faces is not covered by a neighbouring block (C.f. Figure 3.1).

The shortest distance between the contour line and the peak corresponds now to the isolation
of the peak. To calculate the shortest distance first the ILP needs to be found. For this a nearest
neighbour search in the data of the sweepline can be conducted. Doing this reduces the 3D-
Search for the ILP, where position and elevation needs to be considered, to a 2D-Search in a
reduced set of points.

Figure 3.1: Illustration of DEM-Grid and sweepline snapshot by using a Voxel representation.
Red represents current peak. Orange DEM-Pixels are contained in the sweepline.
White represents already removed and black not yet added DEM-Pixels.
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3 Algorithm

Algorithm 1: Top-Level algorithm to calculate the isolation of every mountain

Data: tiles with DEM-Pixels
1 𝑖𝑙𝑝𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒 := build ILP Search Area Tree // Section 3.3

// Setup and Linking Phase

2 forall 𝑡𝑖𝑙𝑒 ∈ 𝑡𝑖𝑙𝑒𝑠 do
3 𝑝𝑒𝑎𝑘𝑠 := 𝑡𝑖𝑙𝑒 .CalculatePeaks()
4 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒 := CreateSweeplineEventQueue(𝑝𝑒𝑎𝑘𝑠, 𝑡𝑖𝑙𝑒) // Algorithm 2

5 𝑠𝑤𝑑 := 𝑘D-Tree Sweepline Data structure // Section 3.2.2

// Run Sweepline (Section 3.1)

6 forall 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒 do
7 if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝐼𝑁𝑆𝐸𝑅𝑇 then
8 𝑠𝑤𝑑.Insert(𝑒𝑣𝑒𝑛𝑡)
9 else if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝑅𝐸𝑀𝑂𝑉𝐸 then
10 𝑠𝑤𝑑.Remove(𝑒𝑣𝑒𝑛𝑡)
11 else if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝑃𝐸𝐴𝐾 then
12 𝑖𝑙𝑝 := 𝑠𝑤𝑑.NearestNeighbour(𝑒𝑣𝑒𝑛𝑡)
13 𝑢𝑏 := Distance(𝑒𝑣𝑒𝑛𝑡, 𝑖𝑙𝑝)
14 𝑖𝑙𝑝𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒.LinkPeakWithTiles(𝑒𝑣𝑒𝑛𝑡,𝑢𝑏) // Algorithm 4

// Exact calculation Phase

15 forall 𝑡𝑖𝑙𝑒 ∈ 𝑡𝑖𝑙𝑒𝑠 do
16 𝑝𝑒𝑎𝑘𝑠 := 𝑖𝑙𝑝𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒.GetLinkedPeaksForTile(𝑡𝑖𝑙𝑒)
17 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒 := CreateSweeplineEventQueue(𝑝𝑒𝑎𝑘𝑠, 𝑡𝑖𝑙𝑒) // Algorithm 2

18 𝑠𝑤𝑑 := Quad-Tree Sweepline Data structure // Section 3.2.3

// Run Sweepline (Section 3.1)

19 forall 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒 do
20 if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝐼𝑁𝑆𝐸𝑅𝑇 then
21 𝑠𝑤𝑑.Insert(𝑒𝑣𝑒𝑛𝑡)
22 else if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝑅𝐸𝑀𝑂𝑉𝐸 then
23 𝑠𝑤𝑑.Remove(𝑒𝑣𝑒𝑛𝑡)
24 else if 𝑒𝑣𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 == 𝑃𝐸𝐴𝐾 then
25 𝑖𝑙𝑝 := 𝑠𝑤𝑑.NearestNeighbour(𝑒𝑣𝑒𝑛𝑡)
26 𝑡𝑖𝑙𝑒𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠.Insert(𝑒𝑣𝑒𝑛𝑡, 𝑖𝑙𝑝, Distance(𝑒𝑣𝑒𝑛𝑡, 𝑖𝑙𝑝))

// While merging keep minimum distance isolation for every peak

27 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠.MergeIn(𝑡𝑖𝑙𝑒𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠)
Result: isolations

To “sweep down the contour line” we insert DEM-Pixels if the sweepline reaches there
elevation. If all adjacent points for a DEM-Pixel are added to the sweepline, which means that
the pixel cube is covered on every side by another cube, the DEM-Pixel is out of scope and can
be removed. Because of this the Sweepline always contains a one DEM-Pixel thick contour line
from its elevation state (C.f. Fig 3.2).
To formalise this approach we define sweepline events. A sweepline event consists of the

position of a DEM-Pixel, an elevation value and can have one of the following types:
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Insert : Insert a DEM-Pixel to the data structure.

Remove : Remove a DEM-Pixel after it goes out of scope.

Peak : Calculate the nearest neighbour in the data structure to the peak DEM-Pixel.

These events can be calculated before the sweepline is executed and are stored in an event
queue. To build the event queue first all Insert and Remove events and then the Peak events
are added to the queue as described in Algorithm 2. The peaks are calculated in the first phase
with the help of the algorithm of Kirmse and de Ferranti [10] and in the second phase the peaks
are used which are linked to the tile by the ILP Search Area Tree described in Section 3.3.

Algorithm 2: Create Sweepline event Queue

Data: peaks, DEM-Pixels
1 forall 𝑝𝑖𝑥 ∈ DEM-pixels do
2 𝑚𝑖𝑛𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 := min{𝑒𝑙𝑒𝑣 (𝑥) |𝑥 direct N,S,E,W neighboar of pix}
3 if 𝑚𝑖𝑛𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 < 𝑒𝑙𝑒𝑣 (𝑝𝑖𝑥) then
4 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑑𝑑𝐸𝑣𝑒𝑛𝑡 (𝑝𝑖𝑥, 𝑒𝑙𝑒𝑣 (𝑝𝑖𝑥))
5 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝐸𝑣𝑒𝑛𝑡 (𝑝𝑖𝑥,𝑚𝑖𝑛𝑆𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔)
6 forall 𝑝𝑒𝑎𝑘 ∈ peaks do
7 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝑃𝑒𝑎𝑘𝐸𝑣𝑒𝑛𝑡 (𝑝𝑒𝑎𝑘, 𝑒𝑙𝑒𝑣 (𝑝𝑒𝑎𝑘))
Result: eventQueue

In the last step the events are sorted in descending order by elevation. Adding the peak
events last to the queue and using a stable sorting algorithm makes sure that every insert and
remove event that is greater or equal to the peak is processed before the peak is calculated.
A DEM-Pixel gets activated when the sweepline reaches its height and deactivated if the

smallest adjacent DEM-Pixel is higher than the peak. The minSurrounding is also checked to
filter out events that would never be active.
It is sufficient to simply look at the von Neumann neighbourhood and not the complete

Moor neighbourhood, because on a small scale the grid of the DEM can be approximated as
rectangles, where the distance along the diagonal is always longer than along the main axis.

To run the sweepline the events from the eventQueue are processed one after the other. This
is shown in Algorithm 1. The state of the sweepline is defined by the elevation of the last
sweepline event.

Our tests in Section 4.3 show that removing events does not make sense in the second phase
of the Algorithm, because in that phase there are a lot more Insert than Peak events and the
cost to remove all inserted DEM-Pixel is higher than gain from a cheaper nearest neighbour
search. This does not effect the result since the contour line will always be closer to peaks than
points of the space between a contour line.
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Figure 3.2: Example steps of the sweepline with peak (red point) and nearest neighbour. White
pixels represent DEM-Pixels that are in the data structure of the sweepline.

3.2 Sweepline Data Structure

3.2.1 Basic concepts

The data structure which the sweepline is based on, needs to have a few key features. Most
importantly it needs to support a fast nearest neighbour search operation. Because of this a
space partitioning tree is the obvious choice. The data structure also needs to be dynamic, since
between every peak calculation, a lot of DEM-pixels are inserted.

The first test was conducted with the KD-Tree implementation of the Computational Geome-
try Algorithms Library (CGAL). It was dismissed because according to the CGAL documentation
[13], the implementation doesn’t support insertions after the tree is built, which caused the
tree to be rebuilt on every nearest-neighbour peak calculation.
Because other implementation did not satisfy the requirements, a dynamic 𝑘D-Tree was

implemented, which had good performance on nearest neighbour queries, and a fixed-size
Quad-Tree with better performance for inserts. The 𝑘D-Tree was used in the first phase of the
algorithm. This was done because a lot of peaks need to be calculated in this step since the
peak finding algorithm generates a lot of potential peaks. The Quad-Tree is used in the second
phase, where the insertion operation dominates C.f. Section 4.2.

Subdivision inQuadrilaterals The concept of both data structures is to create a space-partitioning
tree for a spherical surface. For that the space was divided into quadrilaterals which are aligned
with latitude and longitude (C.f. Fig. 3.3). We will call them just quadrilaterals in the rest of
this chapter. These quadrilaterals are defined by their north-west and south-east corners.
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Each quadrilateral is then further subdivided into smaller quadrilaterals by using a center-
split approach which guarantees a max tree-depth of 𝑂 (log(𝑁 )).

In this thesis the biggest quadrilateral is one tile, since we use the tile-bucket-tree to divide
further.

Figure 3.3: Representation of a lat-lng aligned quadrilateral.

The points are saved in a vector at the leaves of the tree. Testing if a point is inside a
quadrilateral is now done by comparing the latitude and longitude with the north-east and
south-west corner of the quadrilateral.

Shortest Distance between Point and Quadrilateral To conduct a nearest neighbour search we
need to calculate the shortest distance of a pint to a quadrilateral. During the first phase of
the algorithm the quadrilaterals are approximated as trapezoids. Because of this euclidean
distance calculations can be used. For the second phase since points are further apart a more
sophisticated approach is necessary.
For this an algorithm was developed to find the point 𝑠 in the quadrilateral 𝑄 with the

shortest distance to point 𝑝 . Afterwards Equations (2.1) or (2.2) can be used to calculate the
distance between 𝑠 and 𝑝 .

There are four different cases for the relative location between 𝑝 and 𝑄 .

1. 𝑝 is inside 𝑄 (red area in Fig. 3.4).

2. 𝑝 is between the longitude lines of 𝑄 (green area in Fig. 3.4).

3. 𝑝 is outside the longitude lines of the 𝑄 , but between the lines that are perpendicular to
the longitude circles of 𝑄 and go through the corners of 𝑄 (blue area in Fig. 3.4).

4. All other options (white area in Fig. 3.4).

In case 1 the distance is defined to be zero.
In case 2 the point with the shortest distance 𝑠 is on the intersection between the longitude
line of 𝑝 and one of the latitude-edges of the quadrilateral (Fig. 3.4 left). This is because all
latitude circles are parallel to each other, and the shortest distance between two latitude circles
is along the longitude lines. Because of this there is no point with a shorter geodesic on the
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Figure 3.4: Areas for different min-distance cases between quadrilateral and point.

latitude circles of 𝑄 and the latitude circle 𝑝 lies on. The shortest distance to 𝑄 is now the
shorter distance between these two intersection points and 𝑝 .
If none of the above was the case, the point 𝑠 is on one of the longitude lines of the quadrilateral.
To find out which longitude line has a shorter distance to 𝑝 , the point 𝑝 is rotated by the angle
it would take to get the center longitude of the quadrilateral aligned with the meridian. If the
longitude of 𝑝 is now positive, the west longitude-edge of 𝑄 is closer to 𝑝 . Otherwise, the east
longitude-edge of 𝑄 is closer.1
Now point 𝑠 with shortest distance to 𝑝 on the longitude edge is calculated with linear

calculus. For this point 𝑝 and the edge-points defining the longitude edge 𝑙1, 𝑙2 are transferred
into Cartesian space using the formula:

𝑥 := cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) (3.1)
𝑦 := cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) sin(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒)
𝑧 := sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

Then the following formula is used to find the point that is closest to the longitude circle:

𝐴 := 𝑙1 × 𝑙2 (3.2)
𝐵 := 𝑝 ×𝐴
𝑆 := 𝐴 × 𝐵

Note, 𝑆 is normalized, because (3.1) produces normalized vectors and (3.2) uses only vector
products.
The idea behind this formula is the following: The vector product 𝐴 calculates the plane

of the great circle defined by 𝑙1 and 𝑙2. The vector product 𝐵 calculates the plane of the great
circle that is perpendicular to 𝐴 and goes through the point 𝑝 . Lastly the intersection between
these two great circles is calculated (𝐴 × 𝐵). That means that the geodesic between 𝑠 and 𝑝

1This is just possible because we split the sphere at the anti meridian. Because of this the value of the most west
longitude of a quadrilateral is never bigger than the most east one.

12



3 Algorithm

is perpendicular to the longitude circle and with that the shortest possible geodesic between
them.
𝑆 is now transferred back to longitude and latitude using

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 := arcsin(𝑧) (3.3)
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 := arctan2(𝑥,𝑦)

If the latitude of 𝑠 is between the top and bottom latitude of 𝑄 the point with the shortest
distance is 𝑠 (case 3). Otherwise one of the corners is the point with the shortest distance (case
4).

Figure 3.5: Min-distance between quadrilateral and point examples.

3.2.2 Dynamic kD-Tree

For the first phase of the algorithm a dynamic two dimensional 𝑘D-Tree was implemented.
This was done because in this step a lot of nearest neighbour queries need to be calculated and
having a growing tree proofed to have a runtime benefit over the static Quad-Tree described in
Chapter 3.2.3 even thou the Quad-Tree has better insert performance (C.f. Section 4.2).

The 𝑘D-Tree design follows a basic concept. Each inner node has two children that represent
one half of the quadrilateral of the parent. For the split policy, a center-split approach was used
which splits the quadrilateral at latitude or longitude, depending on which edge-distance is
longer. Each leaf node has a fixed capacity of points 𝐶 it can hold.

To decrease the amount of expensive allocation and free operations a memory manager was
implemented that allocates memory for nodes in chunks.

The insertion operation is done by checking on every level of the tree which child contains
the point. Because of the center-split policy this has a complexity of 𝑂 (log2(𝑁 )), where 𝑁 is
the number of insertions. If a leaf node is found with available capacity, a linear search on the
array of the leaf is executed to find a free spot and the point is inserted in that spot. If the leaf
reaches its maximum capacity a split operation is executed. Because of the center-split policy
it is possible that this needs to be done log2(𝑁 ) times, however the sum of insertions and split
operations will still be in 𝑂 (log2(𝑁 )).
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It is often the case that the first𝐶 points that are inserted to the data structure are very close
to each other since they belong to the biggest mountain in the tile. That causes an imbalanced
tree, but more importantly this causes one path down the tree to be in one chunk of the memory
manager, what by itself means that nodes in the first layers of the tree, that will be called the
most, could end up in different chunks. This causes bad caching behaviour and to improve this
the first n layers of the tree are built during the initialisation process.
For the remove operation the tree is traversed down to the leaf which contains the point

that needs to be removed. Then a linear search is again executed to find the point in the array
of the leaf and the point is then removed from the leaf.

To find the closest point for peak 𝑝 a textbook nearest neighbour search, described in [5], is
used. This search algorithm has also a time complexity of 𝑂 (log2(𝑁 )).

3.2.3 Static Quad-Tree

Our tests in Section 4.3 show that removing events in the second phase would be too cost
intensive. Because of that the data structure will always need the maximum space to hold all
available points. Since all data needs to be allocated anyway, a static quad tree was implemented
that uses one fixed-size array to store all events. The space of the array is then grouped in
leaves which correspond to one small portion or quadrilateral of the DEM tile area. To build
this tree two metrics need to be available:

1. 𝐿 := the maximum level of the quadtree and

2. 𝑀𝐴𝑋_𝑉 := the number of event points that correspond to one leaf.

These metrics depend on the number 𝑁 of DEM-Pixels in a tile2 in the following way:

𝐿 := ⌈log4(𝑁 /𝑀𝐴𝑋_𝑉 )⌉ | 𝐿 < log4(𝑁 ) (3.4)

𝑀𝐴𝑋_𝑉 :=
⌈
𝑁

4𝐿

⌉
(3.5)

(3.5) is used to calculate the maximum number of points that will be added to one leaf if
the max Level is 𝐿. That means that the tree consists of 4𝐿 leaves where each leaf can hold
𝑀𝐴𝑋_𝑉 event.
Algorithm 3 calculates the leaf index for a given point 𝑝 of a tile. This algorithm splits for

every level the bucket—and by that the quadrilateral—in 4 parts and calculates which part
includes 𝑝 . With this approach the index is just calculated without traversing the tree.
Analysing algorithm 3 revealed a high amount of branch miss predictions. Because of this,

the if-else statements where replaced with predicated instructions. This however would make
the algorithm harder to read.

To guarantee an efficient nearest neighbour search it is necessary to know which part of the
tree is occupied by values and which can safely be ignored. Because of this a Boolean-array is

2This number is fixed per resolution, for example the 3 arc-second tile has a maximum of 12002 = 1.440.000
DEM-Pixels.
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Algorithm 3: Find index for latitude and longitude

Data: 𝑙𝑎𝑡, 𝑙𝑛𝑔 of 𝑝 and min/max latitude and longitude for quadrilateral
1 level, index := 0
2 bucket := 4𝐿
3 while level < 𝐿 do
4 midLat := (maxLat +minLat)/2
5 midLng := (maxLng +minLng)/2
6 if 𝑙𝑎𝑡 ≥ midLat then
7 minLat := midLat
8 else
9 index := index + bucket/2
10 maxLat := midLat
11 if 𝑙𝑛𝑔 ≥ midLng then
12 minLng := midLng
13 index := index + bucket/4
14 else
15 maxLng := midLng
16 bucket := 4√bucket
17 level := level + 1

Result: index

used with size (4𝐿 − 1)/3 which stores for every inner node if points where inserted to any leaf
inside the boundary of this node.

To insert a point to the Quad-Tree Algorithm 3 is used with the addition that on every step
the corresponding node is marked that it now contains data. When the index is found the point
is inserted to the leaf.
The nearest neighbour query is essentially the same as for the 𝑘D-Tree, with the addition

that now one level contains four child nodes and that the boundaries are calculated similar to
the method described in Algorithm 3.

3.3 ILP Search Area Tree

The ILP Search Area Tree has a few requirements:

• It needs to be able to create a relationship between peaks and tiles that could contain an
ILP.

• It needs to be able to find tiles that are withing the upper bound of a peak.

• And lastly it needs to find the closest tile with bigger elevation than a peak, if no upper
bound was found.

Because of this a 𝑘D-Tree, similar to the Dynamic 𝑘D-Tree from Section 3.2.2, with center-
split was implemented. This tree splits the space in longitude and latitude and has one leaf for
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every tile. Since a tile has always the size of one latitude and one longitude and there are 360
longitudes and 180 latitudes, the maximum depth of this tree is log2(390 · 180).
With that the ILP Search Area Tree divides the complete search area in quadrilaterals on a

tile level where the Sweepline Data Structure divides a tile in quadrilaterals on a DEM-Pixel
level. So one node on the ILP Search Area Tree represents a quadrilateral on the spherical
search space, where the root node would represent the whole globe.
Every inner node in this tree contains the maximum elevation of the area it represents.

Because of this while building the tree the maximum elevation for every tile needs to be
available.

A link of a peak to a tile is represented by a vector inside the leaf, which contains the position
of the peak. To ensure multi-threaded inserts, the concurrent_vector from the Thread Building
Blocks (TBB) library is used.

The recursive Algorithm 4 is used to distribute peaks that have been identified in phase one
to all leaves that could contain the ILP. If the upper bound (𝑢𝑏) does not exist, because the peak
is the highest in its tile, the peak is marked with an 𝑢𝑏 of −1. With the help of Algorithm 4
the upper bound for such cases is calculated by using the maximum distance to the closest tile
with higher elevation than 𝑝 .

Algorithm 4: Link peaks to tiles that could contain an ILP

// 𝑢𝑏 is upper bound for peak 𝑝

Data: 𝑝,𝑢𝑏
1 Function LinkPeakWithTiles(𝑝):
2 if 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒.𝑚𝑎𝑥𝐸𝑙𝑒𝑣 < elev(𝑝) then
3 return
4 if 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 then
5 𝑙𝑖𝑛𝑘𝑠.PushBack(𝑝)
6 if 𝑢𝑏 < 0 then
7 𝑢𝑏 := max distance to this tile
8 return

// 𝑐1, 𝑐2 are childs of the current node

9 if min distance to c1 < min distance to c2 then
10 if 𝑢𝑏 < 0 or min distance to c1 < 𝑢𝑏 then
11 𝑐1.LinkPeakWithTiles(p)
12 if 𝑢𝑏 < 0 or min distance to c2 < 𝑢𝑏 then
13 𝑐2.LinkPeakWithTiles(p)
14 else
15 if 𝑢𝑏 < 0 or min distance to c2 < 𝑢𝑏 then
16 𝑐2.LinkPeakWithTiles(p)
17 if 𝑢𝑏 < 0 or min distance to c1 < 𝑢𝑏 then
18 𝑐1.LinkPeakWithTiles(p)

For the minimum distance calculations between a point and an inner node, the approach
described in Section 3.2.1, is used. The maximum distance between a point and a tile is defined
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as the minimum distance plus the length of the diagonal of the tile. Because this distance is an
upper bound, it is not problematic if it is a bit bigger than the real maximum distance.

3.4 Analysis

To calculate the isolation for every mountain the space is divided into tiles of one latitude times
one longitude. An ILP Search Area Tree is created to link peaks to tiles which could hold a
nearest higher ground. Building the ILP Search Area Tree is in 𝑂 (𝑇 · log(𝑇 )) where T is the
amount of tiles. Because T is relatively small and has a maximum of 360 · 180 = 64800 this time
is negligible.

Afterwards for every tile a sweepline run is conducted with a reduced set of DEM-Pixels and
quick distance approximations. Peaks which are discovered during this run are then linked to
tiles that could contain a closest higher ground with the help of the ILP Search Area Tree. This
would be in 𝑂 (2𝑛 · log(2𝑛) + 𝑃 · log(𝑇 )), where 𝑛 is the reduced number of DEM-Pixels and 𝑃
is the number of peaks.

Now the accurate sweepline is executed for every tile using the linked peaks as peak events.
The time complexity for this step is in 𝑂 (𝑁 · log(𝑁 ) +𝑇 · log(𝑁 )).

Lastly the results of the tiles are merged using a maximum spanning tree for the position of
the peaks, and the smallest found isolation for one peak is saved. This step has an approximate
time complexity of𝑂 (𝑃 log(𝑃)), for the insertions in the maximum spanning tree. The time for
this step is however again negligible in comparison to the sweepline steps, since the amount of
peaks 𝑃 is relatively small.
With that the time complexity of the algorithm would be in 𝑂 (2𝑛 · log(2𝑛) + 𝑃 · log(𝑇 )) +

𝑂 (𝑁 · log(𝑁 ) +𝑇 · log(𝑁 )) ≈ 𝑂 (𝑁 · log(𝑁 )).
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For the following evaluation the solution described in the paper by Kirmse and de Ferranti [10]
serves as a reference algorithm. This was the only other available algorithm to calculate the
isolation of every mountain. The algorithm and the reference algorithm were implemented in
C++ and compiled using g++9.4.0 with the -03 flag.
The benchmarks were conducted on a machine running Ubuntu 20.04 with the following

specifications:

• AMD EPYC Rome 7702P - 64-core + HT, 2.0-3.35GHz

• 1024GB DDR4 ECC, 2966MHz

• L3: 256MB

• 2TB NVMe Daten-SSD, Intel P4510

• With Hyperthreading enabled

As test data the SRTM-DEM3 data set from viewfinderpanoramas [2] was used. For multi
threading testing and to compare the data structures for the sweepline we also used a reduced
set of this data. The reduced data set includes all tiles of the quadrilateral between (27𝑁, 56𝐸)
and (91𝑁, 120𝐸) which corresponds to 3 126 tiles which is roughly 10% of the total test data set.
Since 1 arc-second DEM data was only available for the US, this section was used to compare
performance on higher resolution DEMs.

Every time-critical test was conducted multiple times and the mean of the results was taken.
For all tests we used an isolation threshold of one km.

4.1 Execution time

For the basic execution time displayed in Figure 4.1 left, the test data set was split in quadrilat-
erals that include an approximately exponential growing number of tiles. These quadrilaterals
are specified in table 4.1.

The new approach was faster than the previous solution by Kirmse and de Ferranti. However
the approach by Kirmse and de Ferranti had surprisingly good execution times, especially with
a lower number of tiles, considering its brute force approach. This is caused by the fact that
most peaks have a relatively short isolation. In fact 99.996% of peaks have an isolation of below
50km and more than 99% below 10km. Since one tile covers on the earth on average an area of
70km × 111km, the nearest higher point is most of the time in the same tile as the peak, where
fast approximations for the distance calculation can be used.

18



4 Evaluation

Min latitude Min longitude Tile count

75◦ 151◦ 4
74◦ 149◦ 9
72◦ 145◦ 21
71◦ 145◦ 35
70◦ 144◦ 62
68◦ 142◦ 151
66◦ 140◦ 249
61◦ 132◦ 550
53◦ 118◦ 1.025
42◦ 98◦ 2.027
26◦ 67◦ 4.094
0◦ 17◦ 8.245

−55◦ −91◦ 16.387
−90◦ −180◦ 26.095

Table 4.1: Min latitude and longitude used for execution time testing. Max latitude and longitude
were fixed at 90◦, 180◦

The “search for every peak separately in concentric circles” approach of the previous solution
causes that for peaks with higher isolation a lot of neighbouring tiles need to be loaded. Because
of this Kirmse and de Ferranti added a tile cache to reduce the number of tile-loads from the
hard drive. We increased the capacity of that cache to the maximum number of tiles, since the
testing machine had enough internal memory to store every tile.

The results of the execution time testings for the test data is displayed in Figure 4.1. A notable
jump in the execution time of the previous solution is between the 213 and 214 tile marks. Here
the Atlantic ocean and a big part of the southern hemisphere is added to the test data, which
includes a lot of smaller islands with high isolation due to their remoteness. Because of this
the previous solution needs to perform a lot more expensive distance calculations, since many
ILPs are now in different tiles than the peak. This causes the execution-time for the previous
solution to explode where our implementation is still growing as expected Cf. Fig. 4.1 right.
To test how the new approach performs on higher resolution DEMs the DEM data of the

USA was used in 3 and 1 arch-second resolution. The results in Figure 4.1 show that for higher
resolution the new approach performed better from the beginning, where the old solution was
already rather strong.
The multi-threading execution time was tested with the reduced test data set. In this case

the old implementation had some issues with the caching implementation. Analysing the
code revealed that the lock used in the tile cache caused some problems for multi-threaded
executions (C.f. fig 4.1 right).
Our algorithm performed well and reached a speedup of 22 for 64 physical threads. The

Hyperthreading step to 128 did not improve the execution time. To confirm the values the
speedup for 64 threads for the complete data set was also tested and showed as well a value of
22 which correlates in this case to about 4min of execution time.
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Figure 4.1: Left: Execution time single threaded. Right: Rate of change between test steps.
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Figure 4.2: Execution time of the US on 3 arc-second (DEM3) and 1 arc-second (DEM1) resolu-
tion.

4.2 Comparison of implemented Sweepline Data Structures

In this section a short comparison between the KD-Tree described in Section 3.2.2 and the
Quad-Tree described in Section 3.2.3 is conducted. Both of these space partitioning trees
perform the same goal and use exactly the same interface.

We used the reduced test data set to test the execution time of the insert and nearest neighbour
operation.
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Figure 4.3: Miltithreded execution time and speedup.

First we measured the time for one insert and nearest neighbour operation in both trees
and took a global average. The results are displayed in Table 4.2 and show that the 𝑘D-Tree
performs better for the nearest neighbour query and the Quad-Tree for insertions. Table 4.2
also shows, that the cost for one nearest neighbour search is a lot higher than one insert.

Data Structure Insert Nearest Neighbour

𝑘D-Tree 141ns 5 458ns
Quad-Tree 79ns 6 687ns

Table 4.2: Average insert and nearest neighbour operation times for 𝑘D- and Quad-Tree

Table 4.3 displays the number of Insert and Peak events, which causes thees operations,
during the two phases. In phase one a lot more Peak events need to be processed and in phase
two a lot more Insert events.

Algorithm Phase Insert Events Peak Events

one 134 699 43 479
two 1178 665 2 451

Table 4.3: Average number of insert and peak events, which cause a nearest neighbour search,
in the different phases of the algorithm.

Using this data we can now calculate the theoretical execution time for the first and second
sweepline run. The dynamic 𝑘D-Tree would take about 256.3ms in phase one and 179.5 ms for
in phase two of the algorithm and the static Quad-Tree about 301.4 ms for phase one and 109.5
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ms for phase two. These numbers correlate also with the tests of the average total execution
time for one tile displayed in Table 4.4.

Algorithm Phase 𝑘D-Tree Quad-Tree

one 190ms 252ms
two 166ms 73ms

Table 4.4: Total operation time for one tile per algorithm phase and data structure.

We also conducted these tests on a set of 1 arc-second resolution data, where the difference
was even more noticeable (Table 4.5).

Algorithm Phase 𝑘D-Tree Quad-Tree

one 1145ms 2405ms
two 1522ms 1194ms

Table 4.5: Total operation time per data structure on the different phases using DEM1 data
from the USA.

4.3 Removing Events after they go out of scope

In this section the question if events should be removed is tested for the different requirements
in phase one and two of the algorithm.
To be able to execute these tests for the Quad-Tree we replaced the Boolean array, which

indicates if the branch below an inner node contains data, with a counter array. The counter of
a node is now increased for every insertion and decreased on every removal from the branch
below that node. If the counter of a node during the nearest neighbour search is zero, the
branch below that node can be ignored, which should improve the nearest neighbour operation.

To test if the removal of events is beneficial, the total time of the operations for one tile was
taken once with and without removal. This was done for every tile in the reduced test data set
and the average time for these operations was than calculated. Because Section 4.2 showed
that both data structures perform well on one of the phases, just the well performing phase for
one data structure was tested.
The test results for phase one are displayed in Table 4.6. The results show that removing

events is beneficial, because the time for nearest neighbour searches dominates during this
phase. This can be explained by the relatively high cost for one nearest neighbour search (C.f.
Table 4.2) and the high amount of peak events during this phase (C.f. Table 4.3), which cause a
nearest neighbour search.

In phase two of the algorithm a lot more insert events need to be processed, which causes also
a lot more remove events and because most peaks are already sorted out during the first phase,
there are not many peak events during this phase. This also explains the results displayed in
Table 4.7 where the cost to remove events is a lot higher than the benefit.
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Remove Insert Nearest Neighbour Total

19.12ms 12.35ms 173.67ms 205.14ms
- 18.43ms 195.44ms 213.87ms

Table 4.6: 𝑘D-Tree times of operations with and without removing of events with data from
phase one.

Remove Insert Nearest Neighbour Total

67.90ms 75.82ms 12.75ms 128ms
- 75.47ms 13.01ms 88.48ms

Table 4.7: Times of operations with and without removing of events with data from phase two.

This is also the case using a the more dynamic 𝑘D-Tree for the second phase as table 4.8
displays.

Remove Insert Nearest Neighbour Total

182.95ms 119.39ms 11.03ms 313.37ms
- 181.26ms 11.55ms 192.81ms

Table 4.8: Times of operations with and without removing of events with data from phase two
using the 𝑘D-Tree.

4.4 Evaluating the results

4.4.1 Comparing results from one tile

To compare the results of the new Algorithm, first a accuracy test on one tile was conducted.
For this the isolation of tile 46◦𝑁, 10◦𝐸 was calculated with the old approach, implemented by
Kirmse and de Ferranti [11] and the new Sweepline approach. The old approach found 604
mountains with higher isolation than one km and the new one 551. Finding less peaks with
isolation bigger than one km is, in this case, the better solution. This means that for peaks with
isolation bigger than one in the old approach, the new found an ILP with isolation of less than
one km.
Analysing the results revealed that for 481 peaks both algorithms found the exact same

isolation, for 36 peaks the new algorithm found a closer isolation, 86 peaks where not identified
by the new algorithm and one peak was not identified by the old algorithm.
The peaks where the new approach found a smaller isolation where tested against a linear

search approach which revealed, that the new isolation’s are exactly the closest ones. The
differences are caused by the fact that the old solution uses the quick approximation, where
the tile is represented as an planar trapezoid, to find the closest point and than calculates the
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distance to the final point with the more accurate distance formula. The new approach uses
the more accurate distance formula already during the search operation.

For the point, that was identified by the new and not the old algorithm, the ILP was on the
the part of the tile which overlapped with the neighbouring one. This part is ignored in the
new approach, because during the second phase of the algorithm the ILP would been found in
the next tile. Because of this the peak has an isolation bigger than one km in the new approach
and below one km in the old one.

4.4.2 Global comparison

The calculation of every mountain took about four minutes on the testing machine using 128
threads.

A lot of mountains were registered multiple times, if multiple peaks were found with similar
elevation and slightly different positions. This is caused by the fact that the elevation of a
registered peak is slightly increased during the peak finding process, to avoid that on flat peaks
neighbours with the same height are registered as nearest neighbours. To filter out these cases,
the sorted list was traversed and if neighbouring solutions were to close to each other, the
solution with the higher isolation was removed. This works especially for big isolation well,
because there most of the peaks have a unique isolation value. For smaller isolations a few
duplication’s will still be in the data, because a lot of peaks with the same isolation are found
which breaks the neighbouring guarantee in the sorted list.

After this, a list of about 12 million peaks with isolations remained. This is halfe the amount
of peaks as the authors Kirmse and de Ferranti found with their algorithm. This is caused by
the fact that the old approach uses the inaccurate distance calculations to find the ILP, which
causes that for a lot of peaks a slightly higher isolation is found and by that a lot more peaks
have isolation higher than the threshold of one km. This was already demonstrated in Section
4.4.1.

The authors Kirmse and de Ferranti [10] published a list of isolations for every mountain.
The results in that list suggest that a slightly different set of data was used, since the position of
a lot of peaks were slightly of and a few isolations were found at areas where our data showed
a too small elevation for this to be possible. Because of that we tried to execute the mountains
algorithm [11] on our test data, however were not able to create meaningfull results. This
suggests that a lot of post processing of the results was done to create the published list.

Due to this the list generated by Kirmse and de Ferranti [11] was used to assess the results.
To get a picture of the accuracy of our approach the 82 mountains with a bigger isolation

than 1000km were compared. The results with the biggest differences are displayed in Table
4.9.

After analyzing the ILP for the peaks from Table 4.9 we found that all of the differences come
within the data source. The two isolation limit points for the mountains in Alaska from the
old source can’t be isolation limits points in our source, since the maximum elevation of that
area is too low. The same is the case for Sand Island, where the ILP of the old source is in the
pacific ocean near Hawaii and the new ILP is on the necker islands (as well near Hawaii). For
the other cases we found slightly closer ILPs which could also be caused by the different DEM
data or the fact that less heuristic approaches where used.
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Rank Mountain Old isolation New Isolation New Rank

14 Kljutschewskaja Sopka 2750 2746 14
18 Kinabalu 2510 2505 18
22 Silisili 2245 2502 19
- Antarctica 83.9◦S 168.38◦E 54 1599 43

63 Sand Island 1217 1367 51
52 Mt Washignton 1319 1290 56
55 Putorana State Natural Reserve 1300 1284 58
68 Tahat 1162 1153 67
- Antarctica 69.78◦S 69.79◦W 294 1032 79

Table 4.9: Biggest differences in isolation for mountains with more than 1000km of isolation.

We were not able to find a closer ILP for any peak in our dataset and with that we are
confident that for a given data set our approach always finds the closest ILP.
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5 Conclusion

In this work we introduced an algorithm to find the isolation for every mountain with the
help of Digital Elevation Models. The algorithm calculates first an upper bound for every
peak within one tile and links this peeks, with the help of the upper bound, to tiles that could
contain an Isolation Limit Point (ILP). In the second phase the ILP for all tiles and all linked
peaks is calculated and the results are merged by only keeping the ILP which results in the
smallest isolation for one peak. To find the ILP in both phases a sweepline approach is used.
The sweepline sweeps from the highest elevation to the lowest in one tile and contains just
DEM-Pixels which represent the contour line for the elevation state of the sweepline. If the
sweepline reaches the elevation of a peak, a nearest neighbour search in the data contained in
the sweepline is conducted.
We were not able to find space partitioning trees that was dynamic enough or designed to

run on the surface of a sphere and because of that two approaches for both of the phases of
the algorithm were developed. A special challenge there was the development of an approach
to calculate the shortest distance between a point and a quadrilateral on the 2D surface of a
sphere.
At the end, we were able to calculate results that are closer to the reference data than the

old solution in a shorter amount of time.
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