
Cuckoo-PTHash: Exploring Cuckoo Hashing
in the PTHash Framework

Bachelor’s Thesis of

Benedikt Thomas Waibel

At the KIT Department of Informatics

ITI Institute for Theoretical Informatics

First examiner: Prof. Dr. rer. nat. Peter Sanders

Second examiner: T.T.-Prof. Dr. Thomas Bläsius

First advisor: M.Sc. Hans-Peter Lehmann

Second advisor: M.Sc. Stefan Hermann

06. February 2024 – 06. July 2024

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Abstract

A minimal perfect hash function (MPHF) is a hash function that maps a known set 𝑆 of 𝑛

keys to numbers from 0, . . . , 𝑛 − 1 without collision. Construction time, space usage, and

query time are relevant performance metrics of MPHF construction. Known methods do not

achieve the best results in all dimensions simultaneously. PTHash is amethod of constructing

a (minimal) PHF. The algorithm first divides keys into small buckets. Afterwards, it searches

for one seed per bucket that maps keys from this bucket to yet unused numbers from the

output range. PTHash especially focuses on fast queries. Cuckoo hashing is a technique that

uses two hash functions to calculate two candidate positions for each key. This allows more

flexibility to avoid collisions. Recent advances in the field of retrieval data structures enable

space efficient usage of cuckoo hashing for PHF construction. Currently, some methods use

this to construct many small PHFs.

In this work we present Cuckoo-PTHash, a (minimal) PHF that uses cuckoo hashing to map

keys to the output range. Its construction algorithm builds upon the structure of PTHash,

but introduces an additional construction step to resolve the flexibility of cuckoo hashing

after completing the search by chosing a candidate for each key. We design a new bucket

distribution that aims at reducing the entropy of bucket seeds. Additionally, we present

union-find data structures in combination with a filter to be able to use cuckoo hashing

efficiently during search.

Our approach shows that cuckoo hashing can also be used for construction of a large

PHF, not only for small PHF partitions. Our approach significantly reduces the number

of seeds that need to be tried compared to PTHash. We compare different techniques for

each construction step and show that the new bucket distribution results in almost minimal

seed entropy. The designed data structures and solution procedures can be applied to other

methods, as well.

i

Zusammenfassung

Eine Minimale Perfekte Hashfunkion (MPHF) ist eine Hashfunktion, die eine bekannte

Menge 𝑆 an 𝑛 Keys ohne Kollisionen auf die Zahlen {0, . . . , 𝑛 − 1} abbildet. Die Konstrukti-
onszeit, der Speicherbedarf und die Zugriffszeit sind relevante Leistungsmaße von MPHF

Konstruktionsmethoden. Bekannte Methoden erreichen nicht in allen Dimensionen zeit-

gleich die besten Ergebnisse. PTHash ist eine Methode zur Konstruktion einer (minimalen)

PHF. Der Algorithmus teilt die Keys zunächst in kleine Buckets und sucht anschließend für

jeden Bucket einen Seed, der Keys aus diesem Bucket auf bisher unbelegte Werte aus dem

Ausgabebereich abbildet. PTHash fokussiert sich besonders auf schnelle Zugriffe. Cuckoo

hashing ist eine Technik, die zwei Hashfunktionen nutzt, um zwei Kandidaten für die Posi-

tion jedes Keys zu berechnen. Dies ermöglicht mehr Flexibilität bei der Vermeidung von

Kollisionen. Durch jüngste Fortschritte bei Retrieval-Datenstrukturen lässt sich Cuckoo

Hashing platzeffizient für Perfect Hashing nutzen. Bisher nutzen dies einige Methoden für

die Konstruktion vieler kleiner PHFs.

In dieser Arbeit präsentieren wir Cuckoo-PTHash, eine (minimale) PHF, die Cuckoo Hashing

verwendet, um Keys auf den Ausgabebereich abzubilden. Dessen Konstruktionsalgorithmus

baut auf der Struktur von PTHash auf, ergänzt aber einen weiteren Konstruktionsschritt,

um die Flexibilität von Cuckoo Hashing nach Abschließen der Suche durch Wahl eines

Kandidaten für jeden Key aufzulösen.Wir entwerfen eine Bucket-Verteilung, um die Entropie

der Bucket-Seeds zu verringern. Außerdem präsentieren wir Union-Find Datenstrukturen

in Kombination mit einem Filter, um Cuckoo Hashing effizient bei der Suche nutzen zu

können.

Unser Ansatz zeigt, dass Cuckoo Hashing auch für die Konstruktion einer großen PHF

geeignet ist, nicht nur für kleine PHF-Partitionen. Dabei muss unser Ansatz im Vergleich zu

PTHash bedeutend weniger Seeds durchprobieren. Wir vergleichen verschiedene Techniken

für jeden Konstruktionsschritt und zeigen, dass die neue Bucket-Verteilung nahezu minimale

Seed-Entropie liefert. Die von uns entworfenen Datenstrukturen und Lösungsverfahren

lassen sich auch für andere Methoden nutzen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Minimal Perfect Hashing . 1

1.2. Contribution . 2

1.3. Outline . 3

2. Preliminaries 5
2.1. Cuckoo Hashing . 5

2.2. ShockHash . 7

2.3. PTHash . 8

2.4. Retrieval . 9

2.5. Encodings . 10

3. RelatedWork 11

4. Design 13
4.1. Framework . 13

4.2. Improved Bucket Distributions . 15

4.3. Union-Find . 18

4.4. Filter . 19

5. Implementation 21
5.1. Union-Find and Filtering . 21

6. Evaluation 23
6.1. Bucket Function . 24

6.2. Union-Find . 25

6.3. Filter . 27

6.4. Performance of each step . 28

6.5. Comparison to related methods . 29

7. Conclusion 31

Bibliography 33

v

Contents

A. Appendix 37
A.1. Optimality of a seed . 37

vi

1. Introduction

A Perfect Hash Function (PHF) is a hash function that maps a known set of keys 𝑆 to numbers

from {0, . . . ,𝑚 − 1} without collisions. Multiple practical algorithms for constructing a PHF

are known. Known construction algorithms focus either on construction time, query time

or space efficiency. While there are methods that perform well in multiple dimensions,

nonoe of them achieves the best results in each dimension simultaneously.

Cuckoo Hashing uses 2 hash functions ℎ0, ℎ1 to resolve collisions. Each key can be stored at

one of its candidate positions ℎ0(𝑘), ℎ1(𝑘). Cuckoo hashing combines both functions into a

single hash function ℎ by choosing a function for each key 𝑘 . To build a PHF with cuckoo

hashing, both hash functions ℎ0, ℎ1 map into the same output range, and the chosen hash

function 𝑑 (𝑘) ∈ {0, 1} that avoids collisions needs to be stored.

A retrieval data structure maps each key 𝑘 from a set 𝑆 to an 𝑟 -bit value 𝑓 (𝑘) ∈ {0, 1}𝑟 .
Recent developments of succinct retrieval data structures enable a promising new approach

for PHF construction. Using a retrieval data structure, a PHF constructed with cuckoo

hashing can be encoded compactly.

This work combines ideas from two perfect hashing methods, PTHash which has good

query times and ShockHash which is space efficient. PTHash maps keys to buckets, sorts

the buckets, and performs a brute-force search for a displacement value, called pilot, for each
bucket. PTHash fills the output range bucket by bucket. A pilot for a bucket is a successful

choice if there are no collisions with previously inserted keys and within the new bucket.

ShockHash constructs a space efficient PHF by filling small cuckoo hash tables.

We present a new perfect hashing approach. Construction uses the 3 step framework of

PTHash, and an additional step to choose the hash function for each key out of the cuckoo

hashing candidates. Keys of a bucket are mapped to a position using the seed of the bucket

and cuckoo hashing.

1.1. Minimal Perfect Hashing

Given a hash function ℎ : 𝑈 → {0, . . . ,𝑚 − 1}, 𝑆 ⊆ 𝑈 is a known subset of 𝑛 keys from the

universe 𝑈 and𝑚 is the size of the output range with 𝑛 ≤ 𝑚. The function ℎ is a Perfect
Hash Function (PHF) if it maps all keys in 𝑆 without collision, i.e. ℎ is injective on 𝑆 . For

𝑛 =𝑚 a PHF ℎ is further called a Minimal Perfect Hash Function (MPHF). In this case, the

MPHF ℎ is a bijection on 𝑆 . We will write {0, . . . ,𝑚 − 1} as [𝑚] for brevity. We will often

write ℎ : 𝑆 → [𝑚], as we allow the hash function to have any value for keys 𝑘 ∉ 𝑆 . We call

1

1. Introduction

𝛼 = 𝑛/𝑚 the load factor of ℎ, analogous to the load factor of a hash table. For an MPHF, we

have 𝑛 =𝑚 and 𝛼 = 1. In this case, we will use 𝑛 as the number of keys and the size of the

output range.

For small 𝑛, an MPHF can be obtained by trying hash functions by brute force until a

function without collisions is found. This approach does not scale well because the number

of hash functions that need to be tried using this approach grows exponentially with 𝑛.

Instead, practical algorithms for high 𝑛 need a different approach, and they consist of more

than finding one seed that hashes every key without collision.

After construction, a PHF needs to be encoded. Because practical solutions result in more

complex constructions than selection of a single seeded hash function, storing a PHF might

require significantly more storage space. To achieve an efficient encoding, we exploit the

fact that behaviour on keys 𝑘 ∉ 𝑆 is not defined. The hash function can return any value for

such keys. Assuming there are no collisions, we do not need to store keys 𝑘 ∈ 𝑆 . The hash

value for each key is unique and can be used as identifier in applications. A space optimal

encoding only needs to store a minimal representation of the PHF. The asymptotic minimal

space usage of an MPHF encoding is log
2
𝑒 ≈ 1.44 bits/key [18, 27].

Ideally, a solution to the perfect hashing problem should construct a PHF that can be queried

in constant time. Additionally, we desire space efficient encoding of a found PHF. For

certain smaller load factors, efficient algorithms for PHF construction are known. For

𝛼 → 1, efficient construction is increasingly challenging. Over years of research, different

solutions for this problem have been developed. Because construction is easier for higher

storage space or higher query times, solutions usually have a trade-off between being more

compact or having a more efficient construction. Finding algorithms with better space-time

trade-offs is still a focus of current research. We discuss notable algorithms for finding a

PHF in ??.

(Minimal) perfect hashing has a wide range of applications. It is especially useful if space

overhead for the data structure is limited, and if the number of query accesses is high

compared to re-constructions. For example, it is used in compressed full-text indexes [2],

databases [5], prefix-search data structures [3] and indexes for DNA [29].

1.2. Contribution

The use of a relatively new succinct retrieval data structure [9] enables new approaches in

perfect hashing. This work explores the use of cuckoo hashing in the PTHash framework.

It contributes the following:

• A configurable (minimal) perfect hash function implementation

• Design of a new bucket mapping function for our setting, reducing the entropy of

seeds

• Significant reduction of required brute-force through use of cuckoo hashing

2

1.3. Outline

• Design of reversible union-find data structures and a lazy filter to efficiently test if a

graph is a pseudo-forest

• An experimental evaluation measuring the effectiveness of the designed algorithms

in practice and comparing the MPHF against its predecessor PTHash and against

SicHash

1.3. Outline

The outline of this thesis is as follows. Chapter 2 explains the fundamentals of cuckoo

hashing, ShockHash, and PTHash, as well as the used retrieval data structure and used

encodings. Chapter 3 discusses related work in the fields of cuckoo hashing and (minimal)

perfect hashing. Chapter 4 presents the designed algorithms in depth. The next Chapter 5

discusses the implementation and names notable implementation details. The implemen-

tation is evaluated and compared against other algorithms. This evaluation is grouped in

Chapter 6. Finally, we present the results of this work with a conclusion and ideas for future

work in Chapter 7.

3

2. Preliminaries

In this chapter, we introduce fundamental concepts that are used by our approach. We

start by discussing cuckoo hashing, the core technique of our approach. Afterwards we

discuss ShockHash and PTHash, two perfect hashing methods that provide ideas for our

new method. Lastly, we discuss retrieval and encodings. Both are necessary to store a PHF

compactly after construction.

2.1. Cuckoo Hashing

Cuckoo hashing [28] is a well-known method for collision resolution in hash tables. The

original method uses two hash functions ℎ0, ℎ1, each hashing into a different table of
𝑚
2
cells.

This gives each key two cells where it can be stored. Lookup is possible in constant time.

To find the cell of a key, one simply has to evaluate both hash functions and look up the

determined cells. Deletion is possible in constant time in a similar manner, unless the table

sizes need to be scaled down.

Upon insertion, we evaluate both hash functions, resulting in two candidate cells. If one of

the cells is empty, we place the value there and the insertion is done. Otherwise, we store the

key in its candidate cell from the first table. We now need to store the key that was previously

stored in that cell somewhere else. We do this by evaluating the other hash function for

the key, and store it in its alternative cell in the other table. This process of kicking out the

previously stored values gives the method its name. We perform a recursive insertion with

kicked out keys until we find a free cell. This process is depicted in Figure 2.1.

Insertion fails if we reach a maximum number of recursions, or if we try to insert a key

into a cell with the same hash function for a second time. If we did not try the second hash

function for our new key yet, we can retry starting with the resulting second candidate

cell.

In the case of failure, we need to rehash the tables with different hash functions. Rehashing

can be done by looping over the tables, deleting and re-inserting every key that is not at the

correct location with the normal procedure. Rehashing with different hash functions on

failure is usually done by choosing a different seed for two seedable hash functions.

Up to a certain load factor 𝛼 , the success probability of insertion tends to 1 for𝑚 → ∞ [10,

15, 16, 26]. The asymptotic load threshold is the supremum 𝑐 where the above is true for any

𝛼 < 𝑐 . Also, for 𝛼 > 𝑐 , the success probability of insertion tends to 0. For cuckoo hashing

5

2. Preliminaries

Figure 2.1.: Insertion process of a cuckoo hash table. Left: before the insertion. Right: after key 11 is

inserted successfully. Keys that were visited or kicked out to their alternative position are marked in

red.

with two hash functions, this threshold is 𝑐 = 0.5. When a cuckoo hash table is filled above

the load threshold, the success probability quickly drops.

Cuckoo Hashing [28] is a well-known method for handling collisions in hash tables, and

variations of the method have been researched. The original work also mentions a variant

where both hash functions map into the same table. It further proposes an asymmetric

scheme where the first table is larger than the second. There are generalizations of cuckoo

hashing that allow multiple elements per cell up to a constant number of elements [7].

Cuckoo hashing can also be generalized to use more than two hash functions [14]. For

distinction, the case with two hash functions is also called binary cuckoo hashing. It is also

possible to choose a different number of hash functions for each key. This is called irregular
cuckoo hashing [8].

For perfect hashing, we will use a variant of cuckoo hashing with a single table of size

𝑚. The theoretical properties are similar to the variant with two tables. The most notable

difference is that both hash functions could map to the same cell, leaving us with only one

candidate cell. This event is less likely for high 𝑚. The hash function chosen for a key

cannot be encoded by storing the key with the cell. This would hinder efficient encoding

of the hash function. Encoding this information using another hash table would not be

efficient either. Therefore, a different approach is needed. We will apply a retrieval data

structure to store which of the two hash functions is used (see Section 2.4).

2.1.1. Graph interpretation

The state of a cuckoo hash table can be interpreted as a graph 𝐺 = (𝑉 , 𝐸) [6, 10]. We will

use this interpretation as it is helpful for checking if a cuckoo hash table can be constructed

and for theoretical considerations. The vertices 𝑉 are the set of cells. For each key 𝑘 in the

hash table, there is an edge {ℎ0(𝑘), ℎ1(𝑘)} in the graph. The graph can have multi-edges

as multiple keys could have the same candidate cells. In case of the variant with one large

table, it can also have self-loops. An example for an equivalent table and graph are shown

in Figure 2.2.

Above, the graph is given in its undirected form. The undirected form of the graph is

equivalent to an abstraction of a cuckoo hash table. We only consider the candidate cells

6

2.2. ShockHash

for each key, but do not choose the candidate. We call this abstraction cuckoo graph. It is
advantageous for perfect hashing as we keep the flexibility of cuckoo hashing, but have

enough information to test whether collisions can be avoided. The directionality of the

graph carries information. Directing an edge is equivalent to choosing the cell of a key.

Afterwards, the edge points at the cell of the key.

A cuckoo graph is without conflict if it can be used for construction of a cuckoo hash table.

The problem of testing a cuckoo graph for this property is then equivalent to testing if the

graph can be directed such that the in-degree of each node is at most 1. We call such a

directed graph 1-oriented. A node with an in-degree of ≥ 2 would be equivalent to a cell

with a collision. A graph can be 1-oriented if and only if it is a pseudo-forest. A pseudo-forest

is a graph where each component is a pseudo tree. A pseudo tree is either a tree or a tree

with one cycle. A pseudo tree can equivalently be defined as a graph where an edge 𝑒 exists

such that: 𝐺′ = (𝑉 , 𝐸 \ {𝑒}) is a tree. Linear time algorithms for testing if a graph is a

pseudo-forest exist. This can be done by testing that the number of edges 𝑒 and nodes 𝑣

fulfil 𝑒 ≤ 𝑣 for each component [33].

2.2. ShockHash

ShockHash [24] is an algorithm for building an MPHF. The name ShockHash is short for:

Small, heavily overloaded cuckoo Hash tables. ShockHash uses binary cuckoo hashing to

build PHFs, storing the hash function choice in a 1-bit retrieval data structure.

Cuckoo hashing allows for a graph interpretation of the perfect hashing problem: finding a

PHF is equivalent to finding an n-edge graph that is a pseudo-forest. Asymptotically, the

success probability of finding a PHF with cuckoo hashing is high for load factors below

𝑐 = 0.5. For higher load factors, the success probability tends to zero. For a small table size

𝑛, it is feasible to retry building the hash table with a different seed. ShockHash fills hash

tables of size 𝑛 with 𝑛 elements. In expectation, construction succeeds after (𝑒/2)𝑛poly(𝑛)
seeds. The success probability is higher than the plain brute-force construction, by a factor

of 2
𝑛
. That means, ShockHash has to try a significantly smaller number of seeds before

succeeding.

Figure 2.2.: Left: a cuckoo hash table with one table and the candidate position for each key. Right:

the equivalent cuckoo graph

7

2. Preliminaries

As result, ShockHash produces an MPHF ℎ 𝑓 (𝑥) (𝑥) : 𝑆 → [𝑛], where 𝑓 : 𝑆 → [2] specifies
which hash function is used for keys in 𝑆 . Successful seeds are recorded, requiring 0.44𝑛+𝑜 (𝑛)
bits withGolomb-Rice code [20, 31]. The function 𝑓 is stored as a 1-bit retrieval data structure,

which requires 𝑛 + 𝑜 (𝑛) bits. In total, ShockHash is very close to the asymptotic minimal

space usage with 1.44𝑛 + 𝑜 (𝑛) bits.

ShockHash has provable theoretic properties. The paper [24] gives two lower bounds for

the success probability of a single seed. The first lower bound is less sharp by a factor of

O(
√
𝑛) and therefore omitted here. Arguments are made using the graph representation.

A seed corresponds to a random graph 𝐺 which may contain self-loops and multi-edges.

We say “the seed is successful” exactly if the graph is 1-orientable, i.e. if the graph is a

pseudo-forest.

Theorem 2.2.1 Let ℎ0, ℎ1 : 𝑆 → [𝑛] be uniformly random functions. The probability that
there exists 𝑓 : 𝑆 → [2] such that 𝑥 ↦→ ℎ 𝑓 (𝑥) (𝑥) is bijective is at least (𝑒/2)−𝑛𝑒−1

√
𝜋 .

For the proof, please refer to the original paper [24]. From Theorem 2.2.1 follows that in

expectation (𝑒/2)𝑛𝑒/
√
𝜋 seeds need to be tried to succeed. Testing whether a seed generates

a pseudo tree can be tested in linear time, resulting in construction time of O((𝑒/2)𝑛𝑛).

ShockHash provides a building block for hash functions as an alternative to brute-force. It

is applied as base case of RecSplit (see ??). The paper [24] suggests applying ShockHash

to hash functions based on Hash-and-Displace like PTHash (see Section 2.3). This can be

done by searching for pseudo-forests instead of directly searching for PHFs. We realize this

suggestion in this work.

2.3. PTHash

PTHash [30] is an algorithm for minimal perfect hashing. For construction, the algorithm

splits the input keys into buckets and uses a technique called hash-and-displace on the

subproblems. The name means Pilot Table Hashing. During construction, the algorithm
searches for a seed, called pilot, for each bucket to successfully displace the values in a

bucket. The construction can be described as a three step framework of mapping, ordering
and searching.

In the first step, mapping, the algorithm maps keys to buckets using a hash function and a

global seed. This mapping uses a skewed distribution where the first 30% of the buckets

hold roughly 60% of the keys. This results in a front part with few large buckets and a back

part with many smaller buckets. The algorithm introduces a parameter 𝑐 to control the

balance between storage space and construction time. It reserves 𝑏 = ⌈ 𝑐𝑛
log

2
𝑛+1⌉ buckets,

for higher 𝑐 more space is needed. The parameter 𝑐 can be used to calculate the expected

average bucket size 𝜆 =
log

2
𝑛+1
𝑐

. Because this parameter is more intuitive and because we

8

2.4. Retrieval

already use 𝑐 for the load threshold, we will use the parameter 𝜆 from here on. A key 𝑘 is

mapped to

𝑏𝑢𝑐𝑘𝑒𝑡 (𝑘) =
{
ℎ(𝑘, 𝑠1) mod 𝑝2, ℎ(𝑘, 𝑠1) mod 𝑛 < 𝑝1
𝑝2 + (ℎ(𝑘, 𝑠1) mod (𝑏 − 𝑝2)), otherwise,

where 𝑝1 = 0.6𝑛, 𝑝2 = 0.3𝑏, 𝑠1 is a global seed, and ℎ is a seeded hash function.

In the ordering step, the buckets are sorted by non-increasing size. Since the success

probability for finding a PHF decreases with a growing load factor, sorting ensures that

large buckets are processed first when the success probability is still high.

The searching step takes up the majority of the construction time. The algorithm uses an

additional global seed 𝑠2 and ensures that hash codes ℎ(𝑘, 𝑠2) are distinct within each bucket.

If this is not the case, the algorithm is restarted with a new global seed 𝑠2. Otherwise, the

algorithm searches for an integer 𝑝𝑖 for each bucket 𝐵𝑖 . This integer 𝑝𝑖 is called the pilot of
the bucket and determines the displacement of keys. The position of a key can be calculated

as 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑘) = (ℎ(𝑘, 𝑠2) ⊕ ℎ(𝑝𝑖, 𝑠2)) mod 𝑚. A pilot is successful if none of the positions

it maps keys from the bucket to is taken by a key from a previous bucket. Pilot candidates

are the natural numbers including 0. PTHash tries these numbers successively in increasing

order.

To improve space efficiency, PTHash encodes the pilots in the final representation. Different

encoding methods result in a different space-time trade-off. For encoding, PTHash supports

compact encoding, a dictionary-based encoding, Elias-Fano and the Simple Dense Coding

(SDC) (see Section 2.5). Different encodings can be chosen for the front and the back (the

few larger and many smaller buckets). The buckets in the front part contain a lot of keys

and have lower expected seeds. Using a different encoding method for each part allows for

encoding the front part with a simpler encoding, resulting in a lower request overhead for

many keys. A PHF with 𝛼 < 1 is not minimal. PTHash can convert a PHF with an 𝛼 close

to 1 into an MPHF by mapping the additional positions to free cells in the minimal output

range.

The authors give an extensive evaluation of PTHash based on experiments and benchmarks.

For the detailed results, refer to the original paper [30]. The performance of PTHash depends

on the parameters 𝜆 and 𝛼 . For higher 𝜆 and 𝛼 , the construction time increases and the

required space decreases. PTHash does not get close to the theoretical lower bound of

1.44 bits/key because the search costs grow exponentially. Configurations resulting in < 2

bits/key have impractical construction times. Giving PTHash more storage space reduces

the construction time. The query time can be reduced by choosing a slightly less space

efficient encoding with quicker decoding.

2.4. Retrieval

A retrieval data structure (or static function data structures) represents a function 𝑓 : 𝑆 →
{0, 1}𝑟 , where 𝑛 = |𝑆 |. For each value 𝑘 ∈ 𝑆 it returns the 𝑟 -bit value 𝑓 (𝑘), for values

9

2. Preliminaries

𝑘 ∉ 𝑆 it may return an arbitrary 𝑟 -bit value. Because the behaviour on values 𝑘 ∉ 𝑆 is

not specified, the retrieval data structure does not need to encode the set 𝑆 . This way, the

minimal theoretic space requirement is 𝑟𝑛 bits. Practical algorithms achieving 𝑟𝑛 + O(𝑟𝑛)
with linear construction time and constant time queries are known.

For our case of 𝑟 = 1, we can use Bumped Ribbon Retrieval (BuRR) [9]. BuRR also support

𝑟 > 1. It has a space overhead of about 1%. Queries are performed by evaluating a hash

function ℎ(𝑘), calculating the XOR with a segment of rows from a precomputed table, and

returning the parity of the result. Construction of the table is possible by solving a near

diagonal system of linear equations. The system results in a matrix wich has all 1-entries in

a narrow ribbon close to the diagonal. Bumping refers to the practice of encoding a small

part of the keys in an additional layer retrieval data structure. Keys that would result in

an unsolvable system can be bumped to a later layer. BuRR requires a constant number of

bumping layers and thereby maintains constant access time.

2.5. Encodings

Encodings define how a list of values are represented in bytes. A single value can be retrieved

from the encoded form by evaluating the corresponding decoding algorithm. Encodings

can reduce the required storage space compared to simply storing the values as is in their

initial order. A list of values usually has redundant information like repeated values or

similarities. Encodings can use such relations to achieve a more compact representation.

Most encodings perform better on inputs with lower entropy.

A very simple encodingmethod is compact encoding [30]. Compact encodingmeans encoding

each value with the number of bits required to store the maximum value. Dictionary-based
encoding makes use of repeated values in the input [30]. The dictionary-based method

stores distinct values in an array, the dictionary, and stores each value as an index into this

array. Elias-Fano [11, 13] encoding can efficiently store a monotonic sequence of integers.

The method can be used to encode the prefix sum of seeds, which is such a monotonic

sequence. Simple Dense Coding (SDC) [19] is a compression method that sorts values by

frequency and encodes values with higher frequency with less bits than values with low

frequency. PTHash supports the above mentioned encoding algorithms. Golomb-Rice [20,
31] encoding can efficiently store integer values that have a geometric distribution.

The input can be split into multiple partitions that are encoded separately. Partitioning

can be beneficial if distributions of values are different, or if the entropy of values in a

partition is expected to be lower than the entropy on the whole input. Partitioning can use

a fixed number of partitions, fixed size partitions or dynamic parameters based on the input.

PTHash also implements partitioned compact encoding, a partitioned variant of compact

encoding using a fixed maximum input size for partitions.

10

3. RelatedWork

Many different MPHF algorithms have been developed in the past. A few notable ones are

mentioned here.

This work is based on the ideas of PTHash [30]. There are other algorithms that are based on

a hash-and-displace strategy as well. PTHash is based on an algorithm from Fox, Chen and
Heath (FCH) [17]. FCH structures the construction into mapping, ordering and searching as

well. However, FCH uses addition instead of XOR for displacement and reserves a space

budget at the start to store displacement values in an array. Compared to our method,

FCH achieves fast query times, but has high construction times for a given space budget.

Another algorithm based on the hash-and-displace strategy is compressed hash-and-displace
(CHD) [1]. Different to PTHash, the CHD algorithm uses a uniform bucket distribution.

CHD also stores the seed for each bucket as compressed sequence, but its queries are slow

in comparison to other methods.

The recently presented algorithm PHOBIC [21] improves several aspects of PTHash while

maintaining its low query time. The method uses an optimized bucket function to reduce

the seed entropy. The bucket function of PHOBIC is designed for the setting of PTHash.

We apply the idea to our setting and design new bucket functions.

ShockHash (see Section 2.2) is not the only technique that uses cuckoo hashing and retrieval

to build a PHF. SicHash [25] uses irregular cuckoo hashing and overloads small hash tables.

To build a PHF from many small tables, an offset for each table is stored as a prefix sum of

table sizes. In contrast, the method described here builds one large table from buckets of

keys.

The algorithm RecSplit [12] solves the perfect hashing problem by recursively splitting the

keys into two groups. It does this until a hash function for the remaining keys can be found

efficiently with brute-force. This approach increases the query time because the splits need

to be calculated to determine the hash function for a key. However, the technique can reach a

space usage close to the lower bound with feasible construction time. Additionally, the base

case of RecSplit can be replaced with Shockhash. This variant is called Shockhash-RS [24].

In this case, the algorithm builds many small cuckoo hash tables and needs to try a smaller

number of seeds in expectation.

11

4. Design

In this thesis, we present a new PHF. The new hash function builds upon ideas of PTHash.

We take the three construction steps (Mapping, Ordering and Searching) from that method.

We redesign the search completely to employ cuckoo hashing. We rework the other existing

steps or extend them by alternative approaches. Moreover, we introduce an additional step,

called Directing, to facilitate the usage of cuckoo hashing. This fourth step chooses the used

hash function for each key, thereby directing the edges in the cuckoo graph.

The design of the hash function enables configuration of the input parameters load factor
𝛼 and average bucket size 𝜆. Since the construction of an MPHF is the focus of this work,

the design is laid out for the case 𝛼 = 1. Smaller values of 𝛼 can be chosen, but result in

a non-minimal PHF. The choice of 𝜆 impacts the tradeoff between construction time and

required space. A higher value usually increases search costs, but often also results in more

compact hash functions. In addition to the choice of input parameters, alternatives for

different steps can freely be combined.

The design of the new PHF aims for the following goals:

• utilize the advantage of an increased success probability for inserting a key through

cuckoo hashing

• enable fast queries, avoid deterioration compared to PTHash where possible

• enable compact encoding of the hash function, keep the entropy of seeds low

4.1. Framework

The construction of the hash function is divided into four steps,Mapping, Ordering, Searching
and Directing. Each step serves a fixed purpose. At the same time, a choice of alternative

approaches is presented for each step.

The Mapping step maps each key 𝑘 to a bucket 𝑏 (ℎ𝑘) . Input for Mapping is an initial

hash ℎ𝑘 = ℎ(𝑘, 𝑠1), where 𝑠1 denotes a global seed. The number of buckets calculates as

𝑏max = ⌊𝜆𝑛⌋. Caused by the pseudo-random input, the output is a random distribution of

bucket sizes. We can freely chose the expected bucket sizes. This choice is an optimisation

problem. We design multiple distributions as explained subsequently. The first distribution

maps keys uniformly random to the buckets. An idea of PTHash is a skewed distribution.

The buckets are split into a larger and a smaller subset. A large part of the keys is mapped to

the smaller subset of buckets. We provide a skewed distribution with adjusted parameters.

13

4. Design

Because of the load threshold of 𝑐 = 0.5 for cuckoo hashing, we map 50% of the keys to 5%

of the buckets. Because a high success probability on the first key half is to be expected

with cuckoo hashing, we can use an even smaller portion of the buckets for these keys.

Moreover, we design multiple distributions that aim at balancing the expected work per

bucket. This approach is discussed in detail in Section 4.2.

The Ordering step sorts buckets by desired criteria. After Mapping, buckets are sorted by

their ID. This step can specify a new bucket order. In the following steps, this will be

the order of processing. A supported option for ordering the buckets is sorting them by

decreasing bucket size. This is the order chosen by PTHash. The success probability for a

seed decreases with growing load. The idea behind this order is to reduce the search costs

by processing larger buckets first when the probability is still high. In this work, we sort

secondary by bucket ID. This enables a secondary criterion by giving the bucket ID a special

meaning. Alternatively, the step can also be skipped. In this case, the buckets are passed on

in their initial order. This variant is easy to implement and saves the sorting costs. Initial

measurements show that skipping this step is not worth it. The saved run time of sorting

algorithms is small compared to the additional search costs without Ordering. This variant
only emphasizes the importance of this step. In the following, this alternative is neither

used nor discussed further.

The third construction step is called Searching. We search for a seed 𝑠2,𝑏 (ℎ𝑘) per bucket
that successfully maps this bucket. The crucial difference compared to other approaches

is the use of cuckoo hashing for this mapping. This assigns two candidate positions 𝑝𝑑 =

ℎ𝑑 (ℎ𝑘 , 𝑠2,𝑏 (ℎ𝑘)), 𝑑 ∈ {0, 1} to each key. The whole search process keeps these candidate

positions to fully utilize the flexibility introduced by cuckoo hashing. The final position of a

key is later chosen from these candidates. A new bucket extends the previous cuckoo state.
This state can be used to test if construction of a PHF is possible with a seed or if it results

in a conflict. Testing if a seed is successful is more complicated in comparison to PTHash.

While PTHash can simply test multiple positions in a bitmap, with cuckoo hashing, we

need to test if a seed leads to successful hash table construction. This check is equivalent

to testing if the cuckoo graph is a pseudo forest [24]. For this test, the candidate positions
of keys from the current bucket need to be added to the state. In case of a conflict, the

previous state needs to be used to retry with a new seed. For this purpose, we design three

different union-find data structures that support a reversion. These variants are explained

in detail in Section 4.3. Alternative approaches for the test are insertion into a cuckoo hash

table or a connected components algorithm. These alternatives are not supported here

because they are not promising for our construction. The former gives up the flexibility of

cuckoo hashing for previous buckets, the latter does not preserve state between iterations.

Initial measurement showed that accesses to the union-find data structure make up the

majority of the search time. First passing seeds through a filter reduces the amount of

expensive accesses. The filter rejects a part of the seeds that will with certainty result

in a conflict. Details on the filter are given in Section 4.4. The search considers seeds in

ascending order, starting with 0. The first successful seed is chosen. Our approach therefore

uses a greedy strategy. Because of the order of considering seeds, the probability for a

smaller seed is higher and the entropy is reduced. This is important for encoding bucket

seeds after construction. In contrast to PTHash, we do not use a displacement strategy. The

14

4.2. Improved Bucket Distributions

goal of such a strategy is to be able to try many different positions for a new bucket with

few hash function evaluations. Initial measurement showed that evaluating hash functions

only makes up a small part of the search time. For this reason, we do not employ such a

strategy.

We introduce the step Directing to be able to use cuckoo hashing efficiently. During search

we keep track of both candidate positions for each key. When reaching this step, each

bucket has a seed so that the cuckoo graph is a pseudo forest. In this step, we assign a specific

position to each key by chosing one of the hash functions to map it to a cell. Chosing a

hash function for each key is equivalent to directing the cuckoo graph. For directing, we
support an insertion algorithm that inserts the keys into a cuckoo hash table. This option is

easy to implement, but its run time depends on the component sizes. This step concludes

the construction.

After construction, bucket seeds and chosen hash functions per key are encoded. This step

aims at reducing the space consumption of the PHF. For the encoding of the seeds, we

keep the encoding algorithms used by PTHash. A division into front and back encoding is

possible as well, but our approach splits both parts at half of the keys. Which hash function

was chosen for each key can be represented with a single bit per key. Retrieving the correct

bit information for each key is no trivial problem, but it can be solved with a retrieval

data structure. By using BuRR [9], the storing of this information takes 1 bit/key with an

overhead below one percent.

4.2. Improved Bucket Distributions

Until now, we assumed that we can freely choose the distribution of bucket sizes. More

precisely, we chose a bucket function 𝑏 : 𝑈 → {0, . . . , 𝑏max}. The specific chosen bucket

function 𝑏 determines the pseudo-random distribution of keys to buckets. In the following,

we will discuss the bucket function. The bucket function impacts the expected bucket sizes,

the success probability of a bucket and the expected number of retries. A well chosen bucket

function can decrease the expected search costs, and it can result in seed distributions with

a more compact encoding. We discuss properties of a good bucket function and calculate a

good bucket function for Cuckoo-PTHash.

Let 𝛼 : [0, 1] → [0, 1] be the function mapping portion of processed buckets to the load
of a hash table[21]. Then, the derivative 𝛼′

is the function of bucket sizes as portion of

the table size. The probability 𝑝 (𝛼 (𝑥)) of successful insertion of a single key with a seed

can be expressed using 𝛼 . This probability decreases with increasing load. We will use the

shorthand 𝑦 = 𝛼 (𝑥) for the load. Because the probability is the highest at the start of each

bucket, we get an upper bound for the successful insertion of a bucket as: 𝑝 (𝑦)𝛼 ′ (𝑥)
. The

multiplicative inverse of the probability is the expected number of tries to find a successful

seed. We obtain a lower bound for this value: 𝑝 (𝑦)−𝛼 ′ (𝑥)
. Because we try seeds in ascending

order, starting with 0, we obtain the expected seed by subtracting 1 from the expected tries.

Our goal is a low entropy of bucket seeds because this is favorable for encoding. For this

15

4. Design

goal, a bucket function is optimal if it keeps the work per bucket constant. We obtain the

equation 𝑝 (𝑦)−𝛼 ′ (𝑥) !

= 𝑐, 𝑐 ∈ R. This is a differential equation due to the occurence of 𝛼 in

base and exponent. Specific solutions depend on the probability function 𝑝 . To map a hash

value to its bucket, we require the inverse function 𝑠−1 of a solution 𝑠 . For a normalized

solution, we get 𝑏 (ℎ𝑘) = 𝑠−1(ℎ𝑘
ℎmax

)𝑏max.

PHOBIC [21] calculates and presents such an optimal bucket function for the setting of

PTHash. The probability for PTHash is 𝑝 (𝑦) = 1 − 𝑦. This yields the optimal bucket

function:

𝑠−1(𝑥) = 𝑥 + (1 − 𝑥) log𝑒 (1 − 𝑥) (4.1)

For the detailed deduction and proofs of optimality refer to the original paper.

The probability function grows more complex through the use of cuckoo hashing. One

option for modeling the probability is to determine if other keys with a shared candidate

position can evade to their alternative position. This depends on the number of keys that

share a candidate position and the probability that an alternative cell is empty. This approach

results in a recursive definition over a probability distribution. Finding a closed form of a

solution of the differential equation using this function is impractical. The probability is

equivalent to the probability that one of both candidate cells does not belong to a pseudo

tree. The probability of a single cell belonging to a pseudo tree is exactly the portion of

pseudo tree cells. As a result, we get 𝑝 (𝑦) = 1 − 𝑝pseudo(𝑦)2. Calculating the probability

𝑝pseudo can result in similar problems as in the first approach.

Instead of precisely calculating the expected number of pseudo tree cells, we measure

this value experimentally during construction. We can estimate the expected value using

samples. We observe that the portion of pseudo tree cells is close to 0 for loads below 0.5.

For higher loads, this portion increases, but is always below the identity 𝑓 (𝑦) = 𝑦. The

actual function can be approximated with polynomials 𝑓 . For 𝑦 < 0.5 we approximate as

𝑓 (𝑦) = 0. This approximation is equivalent to the assumption that nearly no retries are

required on the first half of keys. We assign a small portion of the buckets for this half. The

chosen portion is 5% of the buckets. Keys in this half are uniformly distributed to buckets.

For 𝑦 ≥ 0.5, the approximations vary depending on the degree of the polynomial. Boundary

conditions are chosen for the development of the number of pseudo tree cells observed in

experiments. For degree 1, we obtain 𝑓 (𝑦) = 2𝑦 − 1 with 𝑓 (0.5) = 0, 𝑓 (1) = 1. For degree 2,

we get 𝑓 (𝑦) = −2𝑦2 + 5𝑦 − 2 with the additional condition 𝑓 ′(1) = 1. Both polynomials map

inputs from the interval [0.5, 1]. Because we control the input, we normalize inputs to the

interval [0, 1]. This results in the transformed polynomials 𝑓 (𝑦) = 𝑦 and 𝑓 (𝑦) = −1

2
𝑦2 + 3

2
𝑦.

Inserting the polynomials into 𝑝 (𝑦) and solving the differential equation yields solutions

for the bucket function. We get Equation (4.2) for the first degree approximation and

Equation (4.3) for the second degree approximation:

𝑠−1(𝑥) = 2 tanh
−1(𝑥) − 2𝑥 − 𝑥 log𝑒 (1 − 𝑥2) (4.2)

16

4.2. Improved Bucket Distributions

1

1

𝑥

𝑠−1(𝑥)

Figure 4.1.: Bucket Function Solutions for PHOBIC and Cuckoo-PTHash. Black: PHOBIC. Blue:

solution for first degree approximation. Red: solution for second degree approximation.

𝑠−1(𝑥) = − 1

2

(3 +
√
17) log𝑒 (3 +

√
17 − 2𝑥) − log𝑒 (1 − 𝑥) − 2 log𝑒 (2 − 𝑥)

+ (18 + 32

663 + 161

√
17

− 72

√
17

) log𝑒 (−3 +
√
17 + 2𝑥)

− 4𝑥 + 𝑥 log𝑒 (1 −
(−3 + 𝑥)2𝑥2

4

)

(4.3)

The normalized Solutions for PHOBIC and Cuckoo-PTHash are displayed in Figure 4.1

We can see that increasing the degree of the polynomial results in a sizable increase of

summands in the solution. Additionally, the cost of normalizing the solution increases. At

the same time, the curves of different solutions are similar to each other. For this reason,

polynomials of higher degree than 2 were not considered. Cuckoo-PTHash supports the

bucket function of PHOBIC and the bucket functions resulting from the approximations.

Additionally, we design a variant that uses large buckets for the first half of keys. For the

second half, it uses the solution function of PHOBIC. We call this variant Cuckoo-PHOBIC.

This variant is designed to utilize the similarity of the curve despite the much simpler

formula for PHOBIC.

4.2.1. Secondary Bucket Order

The bucket functions determine the expected bucket size for each bucket. Depending on

specific keys and the chosen global seed, the actual size of a bucket can differ from the

expected value. It is impossible to avoid this fully, not least because expected bucket sizes

can take any positive number while actual bucket sizes are always integers. One of the

designed Ordering variants allows for defining a secondary sorting criterion by chosing the

initial bucket order. The variant then sorts secondary by bucket ID. The bucket function

determines the initial bucket order and can be chosen differently. Cuckoo-PTHash starts

with buckets with the lowest expected bucket size. Consequently, for two buckets of the

same actual size, the bucket with the lower expected size is processed first. Buckets with a

17

4. Design

higher actual size than expected size will likely need more retries than planned for. At the

same time, for multiple buckets of the same actual size the expected work is the highest for

the last bucket. This is caused by the decreasing success probability. The order mentioned

above aims at balancing out both effects. The advantage of this order is especially visible

for buckets with an expected size close to 0. Often, these buckets contain no key, can be

processed without retries and can be encoded very compact. If one such bucket does contain

a key, the seed needs to be encoded explicitly. Depending on the chosen encoding, this

can also increase the encoding cost of neighboring buckets. For these reasons, we want to

minimize the seed for such buckets by processing them first.

4.3. Union-Find

A union-find data structure maintains disjoint subsets of an underlying set𝑀 . It supports

the operations union and find. At the start, each element in 𝑀 is contained in its own

subset. The operation union joins to subsets. The operation find returns a representative

element for a subset. By comparing the representative, one can determine if two elements

currently belong to the same subset. The time complexity of a sequence of𝑚 union and

find operations is in O(𝑚𝛼 (𝑚)). Here, the function 𝛼 denotes the inverse Ackermann

function. The function value of the inverse Ackermann function grows extremely slowly

and is 𝛼 (𝑚) ≤ 5 for all input sizes feasible in practice.

We use a union-find data structure to represent the state of the cuckoo graph. The set of
cells is the underlying set𝑀 . The partition of the set𝑀 corresponds to the partition of cells

by the graph component they belong to. Components can either be trees or pseudo trees.

We express this by labeling each component as tree or as pseudo tree. On insertion of an

edge, four different cases are possible. Inserting an edge between a tree and a (pseudo) tree

results in a larger (pseudo) tree. An edge between two cells of the same tree component

converts the component into a pseudo tree. An edge between two different pseudo trees

or between two cells of the same pseudo tree both result in a conflict. The behaviour for

different cases is displayed in Figure 4.2.

The idea to use a union-find data structure for construction of a PHF that uses cuckoo

hashing is mentioned by ShockHash [24]. The idea is not used there because construction of

the union-find data structure is to expensive compared to alternatives when used for small

cuckoo hash tables. With our approach, the usual input size is significantly higher. Edges

are inserted bucket by bucket. If insertion of an edge results in a conflict, the current bucket

needs to be retried with a new seed. Edges of previous buckets stay the same. Instead of

constructing the union-find data structure up from the ground each time, the state can be

reused between multiple iterations. To facilitate this, it is necessary that changes from the

current bucket can be reversed.

Union-find cannot be reset without further ado. We design three variants of such an

extension to the data structure. We introduce the additional operations new, reverse und
commit. The operation new signals the start of a new bucket. The data structure needs to

18

4.4. Filter

Figure 4.2.: Behaviour of the union-find data structure on insertion of edges. Components that are

stored by the data structure are illustrated as borders. The label “P” indicates a pseudo tree.

be reset to this state in case of a conflict. The operation reverse performs a reset of the state.

The operation commit signals the successful insertion of a full bucket. With the used greedy
strategy, edges existing at this time are not removed in the future.

The first union-find variant creates a copy of the data structure at the start of a new bucket.

Changes are only applied to the copy. On a reverse, the copy is discarded. On a commit, the
copy replaces the backup state. This variant is simple to implement but has a high memory

consumption.

Alternatively, the second variant maintains a list of changes. This list is empty at the start

of each new bucket. Along with each union operation changes are recorded. On a reverse,
changes are undone in reverse order. A commit clears the list of changes. The idea of this
variant is to compactly store changes for buckets that are small in comparison to the number

of cells.

The third variant applies changes to an additional data structure. This data structure is

empty at the start of a new bucket. For this variant, the operations union and find operate

on two levels. At first, find determines the representative without changes of the current

bucket. Afterwards, it determines the new representative after changes of the current

bucket are applied. Union operates only on the additional data structure. A new edge either

changes the label of a component or replaces the representative of one subset with the

representative of the new superset. The additional data structure thereby represents changes

on representatives. The additional data structure is cleared on reverse. A commit applies the
changes to the main data structure. The goal of this variant are compact storage of changes

and only applying changes to the main data structure that do not need to be undone.

4.4. Filter

The goal of the filter is to reduce expensive accesses to the union-find data structure for

seeds that fail for certain. We allow one-sided errors (similar to a Bloom filter). It is permitted

19

4. Design

that the filter lets seeds through that result in a conflict. For every filtered seed, it must be

certain that it would have resulted in a conflict. Additionally, we require filter accesses to

be quicker than accesses to the union-find data structure.

The filter only uses information on the cuckoo state without knowledge about changes

caused by the current bucket. Therefore, the filter can only be fully precise on buckets of

size 1. An edge that does not cause a conflict could convert a tree to a pseudo tree or it

could connect a tree to a pseudo tree. On a bucket with multiple keys, such changes can

result in a conflict for a later inserted edge. Conflicts that are only caused by the changes

of multiple edges are not detected by our filter. This results in a higher filter precision on

smaller buckets.

An edge results in a conflict if both end points are part of a pseudo tree (possibly the same).

We can use the graph interpretation to detect a part of the conflicts in advance. We use a bit

mask with a 1 for every cell in a pseudo tree and a 0 for other cells. A filter query can be

handled with two bit lookups. If the filter is activated, we first query the filter for each edge.

If a conflict is found, the seed is rejected.

We allow for an additional inaccuracy in our filter. The filter can contain 0 for cells that

are part of a pseudo tree. We call a filter lazy if it makes use of this option. This change

reduces the precision of the filter. Without this change, usage of the filter is only possible

if we know for each cell whether its component is a tree or a pseudo tree. Insertion of an

edge can introduce new pseudo tree cells if both end points are part of the same tree or if a

tree is connected to a pseudo tree. Without laziness, both cases require an update in the bit

mask for each tree node.

20

5. Implementation

This work implements the presented PHF in C++ [32]. The implementation uses CMake as

build system. SimpleRibbon [23] is included as dependency. This is a BuRR implementation

with CMake support. Additionally, the implementation includes an efficient hash table [22]

and a collection of C++ data structures and algorithms [4]. The encoding algorithms are

inherited from PTHash [30] and adapted for Cuckoo-PTHash.

The PHF is implemented as include library fully in header files. This increases the effort

at compile time, but results in machine code optimized for the application that includes

the PHF. The PHF enables extensive configuration by implementing variants for each

step as described in Chapter 4. Different variants are implemented as template types with

a shared interface. This static polymorphism is resolved by instancing at compile time.

These implementation choices aim at avoiding overheads on important execution paths.

Optimizations or outsourcing to compilation reduce overheads at runtime.

The implementation is divided into the core construction algorithm and algorithms for

construction phases and encoding. The core algorithm first produces a non-encoded result.

This way, a PHF can be encoded differently with one execution of construction. Queries

can be performed on an encoded PHF.

5.1. Union-Find and Filtering

The implementations of the union-find variants have a few things in common. They each

use union-by-rank and path compression to efficiently implement the primitive operations

union and find of a union-find data structure. Additionally, the shared interface of the

data structures encompasses the operations insert, newBucket, reverse and commitBucket.

The operation insert inserts a new edge between two given cells or signals a conflict via

the return value. The remaining operations work as described in Section 4.3. The data

structures can be initialized to an empty state with a specified number of cells or from a

starting state. This makes switching the used variant during construction possible. This

capability is currently not used by the construction algorithm.

For our usage we require the additional information if a component belongs to a pseudo

tree. This information is not provided by usual union-find data structures. Affiliation to a

graph component is represented by a parent pointer. Representative nodes can usually be

distinguished by a circular reference pointing to the node itself instead of the non-existant

parent. Instead, the parent pointer of a representative can be used differently as long as

21

5. Implementation

representatives stay distinguishable from other nodes. If the most significant bit (MSB) is
set, the node is a representative carrying additional information on the graph component.

This halves the maximum size of the data structure. Such sizes are not reached in practice.

The maximum value for the parent pointer signals that a graph component is a pseudo tree.

Other special values can be used if required. An alternative version of the PHF uses these

values to store the size of tree components.

The union-find variants differ in their implementation of reversion operations. The variant

CopyUnionFind mostly works like a usual union-find data structure with the exception that

it copies the whole data structure at the start of a new bucket. Because a reverse resets
the data structure to the last backup, newly compressed paths are lost in the process. A

small Optimization of the variant applies changes to the backup until a first edge is inserted

successfully. ReversibleUnionFind requires a structure that uniquely describes changes.

Each change specifies the previous representative, as well as information if rank or pseudo

tree status changed. If path compression is performed, this information is not sufficient. For

this reason, the variant compresses accessed paths only on the next commitBucket. The

TwoLevelUnionFind variant implements the small additional data structure with multiple

small hash tables. They store changes of representatives or changes to the rank or pseudo

tree status of a representative. For the efficiency of the data structure this variant requires

an efficient hash table. For this purpose, the included hash table implementation is used.

Because changes are only applied to the main data structure on commitBucket, changes to

this level never need to be reversed. Consequently, path compression is always possible on

this level.

In our implementation, the filter is merged with the union-find data structure. The union-

find data structure incidentally updates the filter bitmap. The interface of the filter is

isProblematic and returns true exactly if both passed cells belong to a pseudo tree. In

our implementation, the filter is lazy. Cells do not always point directly at their current

representative. When a component becomes part of pseudo tree, the data structure sets bits

in the bitmap along with path compression. The variant TwoLevelUnionFind also updates

the filter for seeds that might fail.

22

6. Evaluation

In this chapter, we measure the implemented PHF and the effects of the designed algorithms.

For the experiments, we use an Intel i7–11700 CPU, with 64 GB DDR4-RAM, running

Ubuntu 22.0.4 as operating system. The CPU has 8 cores, with 48 KiB L1 and 512 L2 data

cache each. To compile the code, we used GCC in version 11.4.0 with the compiler options

-march=native und -O3 activated.

In the first part, we compare the different algorithms designed for each step with each other.

Moreover, we evaluate the impact of the filter. With some of the compared algorithms, large

inputs are not feasible. For this reason, unless declared otherwise, the used input size is

100000 Keys and 𝜆 = 10. In the second part, we compare the PHF with related methods.

For these benchmarks, the input size is 100 million keys. Λ is specified for each result.

The inputs are random strings of length 10 to 50 characters. Because most hash functions

initially hash inputs and proceed with these hashes, construction is mostly independent of

the specific keys. All presented results are an average of three seperate executions.

23

6. Evaluation

6.1. Bucket Function

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Load

T
r
i
e
s
p
e
r
B
u
c
k
e
t

Distribution of Tries (𝑚 = 100000, 𝜆 = 10)

function=Cuckoo-PHOBIC

function=PHOBIC

function=cuckoo degree 1

function=cuckoo degree 2

function=skewed

function=uniform

At first, we observe the effects of the designed variants for theMapping step (see Section 4.1).

The goal of more complex bucket functions is balancing the expected work per bucket [21].

How well each function achieves this goal can be evaluated by observing the seed distri-

bution during construction. This is depicted in Section 6.1. In principal, the probability

to successfully insert a key decreases with higher load. Therefore, the expected number

of tries grows exponentially. For equal load, the success probability is higher for smaller

buckets. This causes a reduction of tries on transition to the next smaller bucket size. With

cuckoo hashing, the success probability is close to 1 for 𝛼 < 0.5. Thus, tries only increase

significantly for 𝛼 > 0.5.

The uniform distribution of bucket sizes does not counteract the exponential growth of tries.

Consequently, the number of tries actually increases exponentially. Due to the exponential

growth, this method is only feasible for small inputs. The skewed distribution, as used

in PTHash, uses few, large buckets for the first half of the keys. Hence, for the same 𝜆,

the method can use smaller buckets than the uniform distribution on the second half of

the keys. In the measurements, this is visible as an exponential growth with a reduced

growth rate. The bucket function of PHOBIC aims at keeping the expected work per bucket

constant. Because the function is not designed for use with cuckoo hashing, the tries are not

constant for Cuckoo-PTHash. The necessary tries are at first higher than with the skewed

distribution for 𝛼 > 0.5, but are smaller on the last buckets. Switching to Cuckoo-PHOBIC

is closer to a uniform distribution of tries on the second half. It uses large buckets on the

first half and applies the function of PHOBIC only to the second half. This results in even

24

6.2. Union-Find

more tries at the start of the second half, but less tries on the last fifth. The total number

of tries at the end is lower. The number of tries still grows continuously. The tries are

not constant. The approximation of the pseudo tree nodes by a polynomial of first degree

results in a bucket function that starts with a high number of retries on the second half.

From this point, the tries decrease nearly linear for the following buckets. At last, by use

of an approximation of second degree, a near constant number of tries per bucket can be

observed.

The choice of the variant for the Mapping step impacts the total construction time and

space usage. The exponential growth of the uniform distribution results in the highest

construction time and the highest space usage by far with 3.83 bits/key. The run time

and the space usage of the other variants, approximations excluded, are each sorted in

descending order. At first comes the skewed distribution with 2.49 bits/key, next the bucket

function of PHOBIC with 2.27 bits/key and last Cuckoo-PHOBIC with 2.17 bits/key. The

construction time is halved when switching from the bucket function of PHOBIC to Cuckoo-

PHOBIC. The space usage of the approximation of first degree is 2.22 bits/key. The space

usage of the approximation of second degree is with 2.16 bits/key slightly lower than the

space usage of Cuckoo-PHOBIC. The construction time for the approximation of first

degree is slightly higher than for the skewed distribution, the construction time for the

approximation of second degree is 50% higher than for Cuckoo-PHOBIC. The high run

time for the approximation of first degree is caused by an insufficient approximation. The

function chooses too large buckets at the start of the second half, costing construction time.

The higher construction time for the approximation of second degree is caused by a higher

average seed compared to Cuckoo-PHOBIC.

The bucket function of PHOBIC has a similar development of tries compared to the approx-

imations. In practice, the number of tries for Cuckoo-PHOBIC is smaller than for the latter

for most of the buckets. On the last buckets, the number of tries is similar for these variants.

This results in a similar, even slightly better space usage. At the same time, the construction

time is significantly smaller. For this reason, unless stated otherwise, the bucket function

Cuckoo-PHOBIC is used for construction.

6.2. Union-Find

In this section, we compare the designed union-find data structures that are used during the

Search step (see Section 4.3). Union-find data structures help with the search by maintaining

the state of the cuckoo graph between iterations and enabling checks for conflicts. For

comparison, the variants were measured in experiments. These experiments simulate

conditions similar to the usage during construction. At the start, the union-find data

structures can be filled up to a desired load. Afterwards, we measure the processing time

for one bucket. We define this time as the timespan between invocation of newBucket and

commitBucket or reverse, respectively. A bucket contains a desired number of pseudo-

random keys. Keys can lead to collisions. In this case, the insert sequence ends with a

25

6. Evaluation

algo=CopyUnionFind

algo=ReversibleUnionFind

algo=TwoLevelUnionFind

0 0.2 0.4 0.6 0.8 1

·105

0

2

4

·106

InsertsR
u
n
T
i
m
e
p
e
r
B
u
c
k
e
t
[
N
a
n
o
s
e
c
o
n
d
s
]

(a) Union Find Benchmark (𝑚 = 100000, 𝛼 = 0)

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

InsertsR
u
n
T
i
m
e
p
e
r
B
u
c
k
e
t
[
N
a
n
o
s
e
c
o
n
d
s
]

(b) Union Find Benchmark (𝑚 = 100000, 𝛼 = 0)

Figure 6.1.: Time measurements of bucket insertion

reverse after the conflict. The displayed measurements were performed on empty union-

find data structures. We measured the run time per bucket over growing bucket size. The

increment of the measured bucket sizes was increased in regular intervals.

The results of the experiments are displayed with linear scale in Figure 6.1a. This repre-

sentation helps to verify the setting of the experiments. For bucket sizes above half of

the size of the data structure, conflicts during insertion are more likely. Due to conflicts,

the run time per bucket should increase less strongly beyond this threshold. In effect, a

sharp decline of the growth rate validates this expactation. For buckets larger than half

the size of the data structure, the run time per bucket is nearly constant. The growth up to

buckets of this size is linear for every variant. CopyUnionFind has the smallest growth rate,

followed by ReversibleUnionFind. The variant TwoLevelUnionFind has the largest growth

rate. Differences on small buckets are not discernible with this scale.

For this reason, Figure 6.1b shows the same result with a logarithmic scale for both axes.

Thereby, differences on small buckets become apparent. For buckets below a certain size,

the run time of CopyUnionFind does only decrease marginally. For the chosen parameters,

the threshold are buckets of around 1000 keys. This matches with expectations as this

variant needs to create a copy of the data structure. The minimal run time per bucket

grows with the size of the data structure. For this reason, the variant is not suitible in

practice. The majority of the buckets is small and nearly all of the retries arise for these

small buckets. Without eliminating the constant costs, CopyUnionFind is infeasible for small

buckets and for large data structures. For very large buckets this variant can still be useful

if the variant is switched afterwards for smaller buckets. The other two variants show a

linear growth starting from buckets of size 1. At that, TwoLevelUnionFind is only faster

26

6.3. Filter

algo=CopyUnionFind

algo=ReversibleUnionFind

algo=TwoLevelUnionFind

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Load

P
e
r
c
e
n
t
a
g
e
o
f
fi
l
t
e
r
e
d
T
r
i
e
s

(a) Construction (n=100000, avg. bucket 10)

0.6 0.8 1

10
0

10
1

Load

S
p
e
e
d
u
p
t
h
r
o
u
g
h
F
i
l
t
e
r

(b) Construction (n=100000, avg. bucket 10)

Figure 6.2.: Filter plots

than ReversibleUnionFind on this minimal bucket size. Because the growth rate is higher

for TwoLevelUnionFind, ReversibleUnionFind is faster for almost every bucket size. With

deactivated filter, using ReversibleUnionFind is most efficient.

6.3. Filter

The filter is designed to reject a majority of conflicting seeds with accesses to the used

union-find data structure. Initial measurements showed that the major part of the search

time is spent on these accesses. The goal of the filter is to reduce the search time, since less

of these expensive accesses are necessary. In this section, we measure the actual impact of

the filter.

Figure 6.2a shows the portion of the tries that are blocked by the filter. This measurement

is created from data that was recorded during construction. For the first half of the keys,

the filtered percentage is 0%. This has two reasons. First, in this half, most buckets succeed

on the first seed. On the other hand, the filter is only effective if the affiliation of a cell

to a pseudo tree is also recorded for the filter. With a lazy filter, this recording is often

delayed. For a load above 0.5, the portion of the filtered Tries starts to grow. This portion

develops differently depending on the union-find implementation. This is caused by the filter

implementation that is coupled to the union-find variants. The portion of the filtered tries

grows towards 1 for all variants. For decreasing bucket sizes there are less failed attempts

that the filter cannot detect. Additionally, cells that lie in a pseudo tree gradually get detected.

The filter reaches higher accuracies earlier for TwoLevelUnionFind. For CopyUnionFind and

ReversibleUnionFind, the filter can only be updated after a seed is successful. The variant

27

6. Evaluation

TwoLevelUnionFind does not need to reverse changes to the first level. As a consequence,

the filter can be updated for any access to this level. Only cells that only lie in pseudo tree

after the change of the current bucket are not captured by this. That explains the earlier

growth of the accuracy.

The filter is designed to have cheap accesses in comparison to accesses to the union-find

data structure. If a seed is filtered, an access to the union-find data structure is not necessary

anymore. An unsuccessful try that is not filtered has an increased run time because both the

filter and the union-find data structure are accessed. The speedup that is achieved by using

the filter is displayed in Figure 6.2b. Because the filter is only effective for loads above 0.5,

the speedup is only displayed for this half. For CopyUnionFind and ReversibleUnionFind,

the speedup is below 1 at first, because the filter causes additional costs initially. For

TwoLevelUnionFind, the speedup reaches 1 early because this variant starts filtering tries

earlier. The speedup grows for every variant. The speedup is the highest for CopyUnionFind

with values up to 10. This arises as a result of the high constant costs per bucket that

can be avoided by filtering an unsuccessful seed. On the last buckets, the speedup sinks

again. This is caused by an optimization built for this variant that already avoids the high

copying costs for conflicts that occur on the first edge and for buckets of size 1. The speedup

of TwoLevelUnionFind is slightly higher than the speedup of ReversibleUnionFind for

many buckets. The speedup on the last buckets is similar for both variants. The highest

reached speedup is around 2.2. The progression of the speedup for both variants follows

from the progression of the filtered tries. The portion of filtered tries is higher at first for

TwoLevelUnionFind, but grows towards the same limit.

The speedup for every variant is close to 1 or higher for most buckets of the second half.

Hence, the filter is worth it on this half for every variant, especially so for CopyUnionFind

and TwoLevelUnionFind. For the half that is excluded here, no tries get filtered. The

filter can be deactivated for this half to avoid additional costs. All variants have lower

construction times through use of the filter. The speedup is 4.84 for CopyUnionFind, 1.15

for ReversibleUnionFind and 1.31 for TwoLevelUnionFind. Moreover, it must be noted that

TwoLevelUnionFind even achieves a lower construction time than ReversibleUnionFind if

both use the filter. This variant is therefore used for construction by default unless stated

otherwise.

6.4. Performance of each step

Because this approach supports a range of algorithms for each step, the steps can scale dif-

ferently and the optimal algorithm can vary for different input sizes. To detect performance

issues and possibilities for future work, we display the performance of each step in the

current default configuration in Figure 6.3.

This plot makes it visible if the default algorithm for a step scales well. Algorithms that do

not scale well could be replaced with a better alternative. Steps that perform well on inputs

below a threshold but drop off above the threshold, might require an alternative for larger

28

6.5. Comparison to related methods

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

Input size

C
o
n
s
t
r
u
c
t
i
o
n
T
i
m
e
n
s
/
K
e
y

part=bucketing

part=directing

part=encoding

part=searching

part=sorting

part=total

Figure 6.3.: Performance of each step over growing input sizes

inputs. The step with the best scaling is the encoding step. The time needed for this step

is linear, even for large inputs. The searching step takes the majority of the construction

time. The bucketing and sorting step each make up a small part of the construction time.

The runtime per key for each of these steps is mostly stable for many input sizes. For input

sizes above a million keys, the construction time per key increases for each of these steps.

This makes the size a promising threshold for partitioning. Because the growth for input

sizes above a million keys is high, an alternative sorting algorithm for such inputs would

help. The most important step for improvements is the directing step. This step shows

an exponential growth over every input size. It surpasses the time needed for searching

for inputs above 50 million keys. This limits the performance of the approach for large

inputs. A better scaling algorithm for this step would greatly increase the performance of

the construction in total.

6.5. Comparison to relatedmethods

We compare our new approach against related methods from the field of minimal perfect

hashing. Especially, we compare with PTHash [30]. Our approach is a collection of mod-

ifications and extensions to this method. Additionally, we compare with SicHash [25], a

(minimal) PHF using irregular cuckoo hashing. Every benchmark is performed on an input

size of 100 million keys. Because our approach runs purely sequential, existing parallel

29

6. Evaluation

Table 6.1.: Performance of different methods on 100 million keys

Method Space Query Construction

(bit/key) (ns/query) (ns/key)

Cuckoo-PTHash 𝜆 = 10, 𝛼 = 1.0, PC 2.12 72 3173

Cuckoo-PTHash 𝜆 = 10, 𝛼 = 1.0, EF 2.06 85 3173

Cuckoo-PTHash 𝜆 = 6, 𝛼 = 1.0, PC 2.43 74 2384

Cuckoo-PTHash 𝜆 = 8, 𝛼 = 1.0, PC 2.23 73 2618

Cuckoo-PTHash 𝜆 = 12, 𝛼 = 1.0, PC 2.04 72 3258

SicHash, 𝛼 = 0.9, 𝑝1 = 21, 𝑝2 = 78 2.41 72 129

SicHash, 𝛼 = 0.97, 𝑝1 = 45, 𝑝2 = 31 2.08 64 179

PTHash, 𝜆 = 4.0, 𝛼 = 0.99, C-C 3.19 35 298

PTHash, 𝜆 = 5.0, 𝛼 = 0.99, EF 2.11 54 532

PTHash, 𝜆 = 6.4, 𝛼 = 0.99, EF 1.99 52 1550

variants of other methods are excluded. For comparability, every method is compared in its

sequential implementation.

For the same space usage, our approach is currently multiple times slower than PTHash.

On one side, this shows that our method can not handle the chosen input size equally well.

Section 6.4 reveals potentials for improvements on inputs of above a million keys. On the

other hand, our approach is the first attempt to use cuckoo hashing for the construction

of large hash tables. It might be the case, that a different approach is necessary for better

results on large input sizes. Although the construction time is higher for our approach, we

can reach a similar space usage before the construction time becomes infeasibly large. This

shows a significant decrease in bruteforce complexity and search complexity. Our method

already uses about 1 bit/key for the retrieval data structure. A similar space usage in total is

only possible with a reduction in space usage for the bucket seeds. This is caused by the

usage of cuckoo hashing. It greatly reduces the number of tries per key. The construction

time is approximately 20 times higher than for SicHash. SicHash uses cuckoo hashing

for the construction of small irregular cuckoo hash tables and is more efficient with this

approach. The query time of Cuckoo-PTHash is higher compared to the queries of PTHash,

as well. This is expected because both methods use the same algorithms for the encoding of

the seed. Additionally, our approach needs to query the retrieval data structure. The query

times are comparable to SicHash that also needs to query a retrieval data structure but

can query seeds a bit more efficiently. In total, our approach is less efficient in comparison

with the compared methods. At the same time, the difference is small enough to motivate

further improvements to this method or exploring similar approaches with cuckoo hashing

in future work.

30

7. Conclusion

Our approach enables construction of a (minimal) PHFwith different tradeoffs. The approach

uses the three construction steps of PTHash, but uses cuckoo hashing during search to map

keys to cells. To utilize cuckoo hashing we designed a new construction step (Directing).
With this addition, the flexibility of cuckoo hashing can be maintained during the whole

search step. For most of the steps, we designed alternative algorithms that can be chosen

for construction.

For the Mapping step we designed new variants with the goal to reduce the entropy of the

seeds. This is especially successful for the approximation of the number of pseudo tree cells

by a polinomial of second degree. The seeds are nearly constant on the second half of keys.

The solution procedure can also be transferred to other methods. The new variants improve

the space-time-tradeoff.

For the search step, we designed three variants of revertible union-find data structures.

Additionally, we designed a filter that reduces the necessary accesses to these data structures.

The variants are evaluated and discussed in detail and advantages and disadvantages are

compared. Two of the three variants are suitable for large input sizes.

Different configurations of our approach are compared with related methods in an experi-

mental evaluation. The performance of our approach is worse compared to these methods.

However, the difference is small enough to motivate further study. Our approach greatly

reduces the necessary bruteforce compared to PTHash.

Our approach provides ideas for future work. In the scope of this work, utilizing partitions

or developing a parallel implementation of designed algorithms was not possible. Both

partitions and parallelization result in performance boosts on related methods. Similar

speedups might be possible for our approach. Some of the currently used algorithms scale

worse for inputs above a certain size. For this reason, limiting the size of a partition can

be beneficial. A different aspect of future work is a new focus for the cuckoo hashing

approach. This work focuses on efficient construction of a MPHF using a greedy strategy. If

cuckoo hashing is used, different successful seeds are not necessarily equivalent to each

other. A clever choice of seeds can result in performance improvements. A more detailed

discussion of this idea is given in Appendix A.1. Such ideas replace the greedy strategy

with an alternative. Backtracking is an additional option to achieve more optimal seeds.

Because such changes aim at achieving a more compact encoding, possibly at the cost of

construction time, fully focusing on minimal space usage is an option.

31

Bibliography

[1] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, displace,

and compress”. In: ESA. Vol. 5757. Springer. 2009, pp. 682–693. doi: 10.1007/978-3-
642-04128-0_61.

[2] Djamal Belazzougui and Gonzalo Navarro. “Alphabet-independent compressed text

indexing”. In: ACM Trans. Algorithms 10.4 (2014), pp. 1–19.

[3] Djamal Belazzougui et al. “Fast prefix search in little space, with applications”. In:

ESA. Vol. 6346. Springer. 2010, pp. 427–438.

[4] Timo Bingmann. TLX: Collection of Sophisticated C++ Data Structures, Algorithms,
and Miscellaneous Helpers. 2018. url: https://github.com/tlx/tlx (visited on

06/03/2024).

[5] Chin-Chen Chang and Chih-Yang Lin. “Perfect Hashing Schemes for Mining Associ-

ation Rules”. In: The Computer Journal 48.2 (Jan. 2005), pp. 168–179. doi: 10.1093/
comjnl/bxh074.

[6] Luc Devroye and Pat Morin. “Cuckoo hashing: Further analysis”. In: Information
Processing Letters 86.4 (2003), pp. 215–219.

[7] Martin Dietzfelbinger and Christoph Weidling. “Balanced allocation and dictionaries

with tightly packed constant size bins”. In: Theoretical Computer Science 380.1-2 (2007),
pp. 47–68.

[8] Martin Dietzfelbinger et al. “Tight thresholds for cuckoo hashing via XORSAT”. In:

Automata, Languages and Programming: 37th International Colloquium, ICALP 2010,
Bordeaux, France, July 6-10, 2010, Proceedings, Part I 37. Springer. 2010, pp. 213–225.

[9] Peter C. Dillinger et al. “Fast Succinct Retrieval and Approximate Membership using

Ribbon”. In: 20th International Symposium on Experimental Algorithms (SEA 2022).
2022, 4:1–4:20. doi: 10.4230/LIPIcs.SEA.2022.4. url: https://github.com/

lorenzhs/BuRR (visited on 12/18/2023).

[10] Michael Drmota and Reinhard Kutzelnigg. “A precise analysis of cuckoo hashing”. In:

ACM Trans. Algorithms 8.2 (2012), pp. 1–36.

[11] Peter Elias. “Efficient storage and retrieval by content and address of static files”. In:

Journal of the ACM (JACM) 21.2 (1974), pp. 246–260.

[12] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal

perfect hashing via recursive splitting”. In: ALENEX. SIAM. 2020, pp. 175–185.

[13] Robert Mario Fano. On the number of bits required to implement an associative memory.
Massachusetts Institute of Technology, Project MAC, 1971.

33

https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-04128-0_61
https://github.com/tlx/tlx
https://doi.org/10.1093/comjnl/bxh074
https://doi.org/10.1093/comjnl/bxh074
https://doi.org/10.4230/LIPIcs.SEA.2022.4
https://github.com/lorenzhs/BuRR
https://github.com/lorenzhs/BuRR

Bibliography

[14] Dimitris Fotakis et al. “Space efficient hash tables with worst case constant access

time”. In: STACS 2003: 20th Annual Symposium on Theoretical Aspects of Computer
Science Berlin, Germany, February 27–March 1, 2003 Proceedings 20. Springer. 2003,
pp. 271–282.

[15] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. “The multiple-

orientability thresholds for random hypergraphs”. In: Combinatorics, Probability and
Computing 25.6 (2016), pp. 870–908.

[16] Nikolaos Fountoulakis and Konstantinos Panagiotou. “Sharp load thresholds for

cuckoo hashing”. In: Random Structures & Algorithms 41.3 (2012), pp. 306–333.

[17] Edward A Fox, Qi Fan Chen, and Lenwood S Heath. “A faster algorithm for construct-

ing minimal perfect hash functions”. In: SIGIR. 1992, pp. 266–273.

[18] Michael L. Fredman, János Komlós, and Endre Szemerédi. “Storing a Sparse Table

with 0(1) Worst Case Access Time”. In: J. ACM 31.3 (June 1984), pp. 538–544. issn:

0004-5411. doi: 10.1145/828.1884. url: https://doi.org/10.1145/828.1884.

[19] Kimmo Fredriksson and Fedor Nikitin. “Simple compression code supporting random

access and fast string matching”. In: Experimental Algorithms: 6th International Work-
shop, WEA 2007, Rome, Italy, June 6-8, 2007. Proceedings 6. Springer. 2007, pp. 203–
216.

[20] Solomon Golomb. “Run-length encodings (corresp.)” In: IEEE transactions on informa-
tion theory 12.3 (1966), pp. 399–401.

[21] Stefan Hermann et al. PHOBIC: Perfect Hashing with Optimized Bucket Sizes and
Interleaved Coding. 2024. arXiv: 2404.18497 [cs.DS].

[22] ktprime. Fast and memory efficient c++ flat hash map/set. 2019. url: https://github.
com/ktprime/emhash (visited on 06/03/2024).

[23] Hans-Peter Lehmann. SimpleRibbon. 2022. url: https://github.com/ByteHamster/
SimpleRibbon/ (visited on 06/03/2024).

[24] Hans-Peter Lehmann, Peter Sanders, and StefanWalzer. “ShockHash: TowardsOptimal-

SpaceMinimal Perfect Hashing Beyond Brute-Force”. In: arXiv preprint arXiv:2308.09561
(2023).

[25] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. “SicHash - Small Irregular

Cuckoo Tables for Perfect Hashing”. In: ALENEX. SIAM. 2023, pp. 176–189.

[26] Marc Lelarge. “A new approach to the orientation of random hypergraphs”. In: Pro-
ceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms.
SIAM. 2012, pp. 251–264.

[27] Kurt Mehlhorn. “On the program size of perfect and universal hash functions”. In: 23rd
Annual Symposium on Foundations of Computer Science (sfcs 1982). 1982, pp. 170–175.
doi: 10.1109/SFCS.1982.80.

[28] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal of Algorithms
51.2 (2004), pp. 122–144. doi: https://doi.org/10.1016/j.jalgor.2003.12.002.

34

https://doi.org/10.1145/828.1884
https://doi.org/10.1145/828.1884
https://arxiv.org/abs/2404.18497
https://github.com/ktprime/emhash
https://github.com/ktprime/emhash
https://github.com/ByteHamster/SimpleRibbon/
https://github.com/ByteHamster/SimpleRibbon/
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.002

[29] Giulio Ermanno Pibiri. “Sparse and skew hashing of k-mers”. In: Bioinformatics
38.Supplement_1 (2022), pp. i185–i194.

[30] Giulio Ermanno Pibiri and Roberto Trani. “PTHash: Revisiting FCH Minimal Perfect

Hashing”. In: SIGIR. New York, NY, USA: Association for Computing Machinery, 2021,

pp. 1339–1348. doi: 10.1145/3404835.3462849. url: https://github.com/jermp/

pthash (visited on 06/03/2023).

[31] Robert F Rice. Some practical universal noiseless coding techniques. Tech. rep. 1979.

[32] Benedikt Waibel. Cuckoo-PTHash. 2024. url: https://gitlab.kit.edu/ucilx/
cuckoo-pthash (visited on 07/06/2024).

[33] Walter Whiteley. “The Union of Matroids and the Rigidity of Frameworks”. In: SIAM
Journal on Discrete Mathematics 1.2 (1988), pp. 237–255. doi: 10.1137/0401025.

35

https://doi.org/10.1145/3404835.3462849
https://github.com/jermp/pthash
https://github.com/jermp/pthash
https://gitlab.kit.edu/ucilx/cuckoo-pthash
https://gitlab.kit.edu/ucilx/cuckoo-pthash
https://doi.org/10.1137/0401025

A. Appendix

A.1. Optimality of a seed

The previous approaches always take the first seed with successful insertion (greedy strat-

egy). When instead multiple successful seeds are compared, a new measure is necessary. We

need to be able to judge how optimal a seed is in respect of expected future work. Otherwise,

alternative strategies and backtracking decisions might only decrease performance.

For PTHash, successful pilots do not impact the success probability of future buckets

differently. The success probability depends on the number of free cells. When cuckoo

hashing is used, that is not true anymore. The success probability for future buckets depends

on the current graph structure. Multiple successful seeds can have highly different impact

on future work. This becomes clear when we look at the graph representation. When a

seed is tested for conflicts, we test if each component of the graph still is a pseudo tree.

Components in an instance without conflicts can be pseudo trees or trees. Also, the size of

components can vary from a single cell to all cells in one component. More pseudo tree nodes

directly reduce the success probability because we cannot insert edges between pseudo

tree components. Additionally, states that have a higher likeliness of adding many pseudo

tree nodes are worse for the success probability, as well. That means, tree components of

smaller size are better in this respect. A large tree could become a pseudo-tree with one

additional edge.

In conclusion, an optimality measure for Cuckoo-PTHash can assign a better score to

states with less pseudo tree nodes. The indirect effect of large tree components can be

considered by assigning a better score to uniform component sizes. We can not only look

at component sizes and ignore pseudo tree nodes. If we would only insert loops, each

component would have size 1, but the success probability is the worst. We can not look at

the average component size either, because it is equal for every state with the same number

of pseudo-tree nodes.

Taking this into account, we can score states by first comparing the number of pseudo tree

nodes. Second, the sum of squares of tree component sizes can compared, a lower sum being

better. In this case, a lower number of pseudo tree nodes is always counted as better score.

Alternatively, one score could be calculated from both values. Having a few more more

pseudo tree nodes might balance out with very balanced tree components. This alternative

allows to represent this in the score calculation. Future work could explore different score

calculations and weights for both measures.

37

A. Appendix

To calculate a score, the number of pseudo tree nodes and the size of each tree component

need to be known. For an efficient calculation, this information cannot be calculated anew

for every iteration. The first can just be stored and updated for each succesful seed. The

second requires keeping track of component sizes after each insert. For the union-find

approach, the rank is not sufficient as approximation. Adding components of smaller rank

increases the component size but never the rank. Our implementation allows to use the

parent pointer of representatives for additional information. This value can be used to

store the size of a tree component. This is done as an example on a dedicated branch of the

implementation.

The chosen strategy impacts the probability of choosing a cuckoo graph, the success prob-

ability, and the expected future work. Because the strategy impacts the expected future

work, the optimal bucket function for each strategy can differ. Exploring possible strategies

and modifying the PHF for a new strategy goes beyond the scope of this work. Examples

of promising strategies are described in the following. Instead of always choosing the

first succesful seed, the search could continue until a certain number of successful seeds

are available. Also, the search could continue until a number of retries is reached. Both

strategies would continue with the succesful seed with the best score. Alternatively, the

search could reject seeds below a certain score threshold. Additionally, trying additional

seeds could be done with awareness of the encoding. For example, partitioned compact

encoding has a predictable space usage. If a previous bucket in the same partition has a

higher seed, the search could continue up to this seed size for the current bucket.

To judge if alternative strategies can improve the performance, we measure a few strategies

in an experiment. This experiment simulates construction on a choice of strategies. The

bucket size is fixed at 10 and the number of cells is𝑚 = 10000. We measure the average

score for each strategy and the number of retries. The score is calculated as a sum of the

number of pseudo tree nodes times the square of the number of cells, and the sum of squares

of tree component sizes. We compare with the greedy strategy. Another strategy, called

retryStart, compares 16 tries for loads 𝛼 < 0.5. The strategy, called alwaysRetry, retries

until 16 successful seeds are found, regardless of the load. Additionally, we measure a

scenario, called minimalStart, that artificially generates the optimal cuckoo graph up to a

load of 𝛼 = 0.5. For higher load, the greedy strategy is used. Because the bucket size is fixed

at 10, the experiment is stopped when retries grow infeasibly large.

The results of this experiment are shown in Figure A.1. The greedy strategy is called random

in the results because it chooses a random cuckoo graph without conflict. First, we discuss

the average score for the measured strategies. This value is displayed in Figure A.1a. The

results include a calculated minimal and maximal score for each load. The score is low

for every strategy in the first half. This is due to the score formula. Differences of tree

component sizes have small impact compared to the impact of pseudo tree nodes. For higher

loads, the scores of the strategies increase. For 𝛼 → 1, the scores tend to the maximal score.

The score first starts growing significantly for the greedy strategy, next for the retryStart

strategy and last for the minimalStart strategy. The alwaysRetry has the lowest score for a

long time but passes the minimalStart strategy with a rapid growth around 𝛼 = 0.5.

38

A.1. Optimality of a seed

0 0.2 0.4 0.6 0.8 1

0

0.5

1

·108

Load

S
c
o
r
e

series=alwaysRetry

series=maximal

series=minimal

series=minimalStart

series=random

series=retryStart

(a)Optimality Score over load

0 0.2 0.4 0.6 0.8 1

0

1

2

3

·106

Load

R
e
t
r
i
e
s

series=alwaysRetry

series=minimalStart

series=random

series=retryStart

(b) Retries over load

Figure A.1.:Measurement results for different strategies.

The number of retries are shown in Figure A.1b. Every strategy has an exponential growth

of retries. This is caused by the fixed bucket size. The start of the exponential growth

is different for each strategy. The retries start growing exponentially in the following

order: the greedy strategy, the retryStart strategy, the alwaysRetry strategy, and the

minimalStart strategy.

The measurements show that considering alternative seeds on the first half can benefit the

performance on the second half. An artificial choice of an optimal cuckoo graph for the

first half delays the growth of the retries the most, even though the greedy strategy is used

for the second half. Admitting a number of retries on the first half, can already delay the

growth of score and retries noticable on the second half. The alwaysRetry has the lowest

score up to a load of around 𝛼 = 0.85, but grows rapidly afterwards. The growth of retries

starts earlier than for the artificial strategy. This shows that below a load or score threshold,

the exponential growth is not triggered. Also, the chosen score function combined with the

alwaysRetry strategy seem to result in a few large tree components. When these grow to

large, the strategy can not avoid converting them to pseudo trees, resulting in the rapid

growth.

In conclusion, the experiment shows that alternatives to a greedy strategy might benefit

the performance of PHF methods using cuckoo hashing. The chosen strategy could greatly

reduce the size of the seeds, at least up to a certain load factor. A bit of extra work on the

first half could reduce the search costs on the second half by a lot. This might result in a

decreased total search time and a more space efficient PHF.

39

	Abstract
	Zusammenfassung
	Introduction
	Minimal Perfect Hashing
	Contribution
	Outline

	Preliminaries
	Cuckoo Hashing
	ShockHash
	PTHash
	Retrieval
	Encodings

	Related Work
	Design
	Framework
	Improved Bucket Distributions
	Union-Find
	Filter

	Implementation
	Union-Find and Filtering

	Evaluation
	Bucket Function
	Union-Find
	Filter
	Performance of each step
	Comparison to related methods

	Conclusion
	Bibliography
	Appendix
	Optimality of a seed

