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Abstract

Fault tolerance is important for High Performance Computing, since the mean time
between failures (hardware failures) decreases as the number of compute nodes in-
creases. A system with 100.000 nodes each with a mean time between failures of
10 years, would have an expected failure rate of once every 50 minutes. We test
various different methods to increase the fault tolerance of PageRank. We show
that checkpointless methods can handle failures in the first 40% and finish in the
same amount of iteration as a failure free PageRank execution. By estimating the
progress of PageRank based on the convergence we manage to write checkpoints
after 40% completion, relying on checkpointless methods beforehand. This allows
us to reduce the checkpoint overhead by 40%. We also use different compression
methods to compress the checkpoints. We try both lossless and lossy compression
methods and show that checkpoints compressed with ZFP (lossy) cause around 40%
less overhead than uncompressed checkpoints. We can reduce the checkpoint over-
head of ZFP by another 16% by writing differential checkpoints, one ZFP checkpoint
of the PageRank values followed by 3 strongly compressed SZ3 (lossy) checkpoints
of the difference between the current PageRank values and the PageRank values at
the time of the last ZFP checkpoint. In most of our test our adaptive approach,
with a 1∼2% checkpoint overhead, manages to handle failures without increasing
the iteration time of PageRank.



Kurzfassung

Fehlertoleranz ist wichtig in großen verteilten Systemen, da der Mittelwert für die
Zeit zwischen Fehlern (Hardware versagen) abnimmt, je mehr Rechenknoten das
System hat. Die erwartete Fehlerrate für ein System mit 100.000 Knoten und einem
Mittelwert für die Zeit zwischen Fehlern von 10 Jahren pro Knoten beträgt 50 min.
Wir testen verschiedene Methoden um die Fehlertoleranz von PageRank zu erhöhen.
Wir zeigen, dass Methoden ohne Checkpoints zu Beginn des Algorithmus in den er-
sten 40% mit Fehlern umgehen können, ohne die Iterationszeit von PageRank zu er-
höhen. Außerdem testen wir verschiedene Kompressionsverfahren um das Erstellen
von Checkpoints zu beschleunigen. Dabei testen wir sowohl verlustfreie als auch
verlustbehaftete Kompressionsmethoden. Wir zeigen, dass das Komprimieren von
Checkpoints mit ZFP (verlustbehaftete) die Kosten zum Erstellen von Checkpoints
im Vergleich zu nicht komprimierten Checkpoints um 40% reduziert. Wir können
den Fortschritt von PageRank an der Konvergenz messen, was uns erlaubt, check-
pointfreie Methoden in den ersten 40% zu benutzen und erst dann zu checkpointen.
Dies reduziert die Kosten für die Fehlertoleranz um ca. 40%. Wir reduzieren die
Checkpointkosten von ZFP weiter, indem wir differenzielle Checkpoints schreiben.
Wir schreiben einen ZFP Checkpoint, gefolgt von drei stark komprimierten SZ3 (ver-
lustbehaftete Kompression) Checkpoints, die die Differenz zum letzten ZFP Check-
point speichern. Dies senkt die Kosten des checkpointens um weitere 12%. Unsere
adaptive Methode benötigte in den meisten von unseren Experimenten keine extra
Iterationen wenn ein Fehler aufgetreten ist und erhöht die Gesamtlaufzeit nur um
1∼2%.



1. Introduction

After processor clock speed stopped increasing in 2004, after years of exponential
growth, new ways to fulfill, the rising performance demand needed to be found. A
viable path to sustained petascale and even exascale performance is massive paral-
lelism [14]. Besides design challenges, massive parallelism also brings with it new
challenges regarding resilience. Since more compute nodes also mean more poten-
tial for hardware failures. For example a machine with 100.000 nodes, each with
a mean time between failures (MTBF) of 10 years, would have an expected failure
rate of once every 50 minutes [20]. There are different types of failures that can
occur besides fail-stop-errors (hardware failures) like silent data corruption but for
our purposes we focus on fail-stop errors. A general approach to handle fail stop fail-
ures is creating a snapshot of the distributed system by writing process checkpoints
(saving the state of each process). The protocol by Chandy and Lamport [9] is a way
to take such a consistent snapshot. A consistent snapshot means that if we restart
the application from the snapshot that the application is in a state consistent with
its normal behaviour. The problem with these snapshots is that their space require-
ment is directly proportional to the memory footprint of the processes. Depending
on the application we have to save only a portion of the data, thereby reducing the
checkpoint overhead. We look for ways to increase the fault tolerance (ability to
handle failures) for iterative converging algorithms, specifically Googles PageRank
algorithm [6]. We look at ways to reduce the checkpoint overhead by writing com-
pressed checkpoints. We use both lossy and lossless compression methods to reduce
checkpoint size. A compression method is lossy if the data after decompression can
deviate from the original data. We also test the fault tolerance of various approaches
that do not require checkpoints. We compare the recovery of the various approaches.
For us recovery entails the amount of redundant work caused by a failure as well as
time it takes until we can resume calculation.

Structure

We start by introducing some common definitions used in this thesis, followed by
the related works we found. In Chapter 2 we take a look at how the PageRank
algorithm works and its different properties. We also look at what adjustment we
make to PageRank to turn it into a distributed algorithm. Then in Chapter 3 we
describe the different methods we test to make PageRank resilient in case of fail-stop
errors, as well as describing the function of the different compression methods we
use. Our experimental evaluation of the various approaches is shown in Chapter 4.
Then in Chapter 5 we give our conclusions and final remarks.

1.1 Definitions

We use the terms fault, failure and fail-stop error interchangeably. To avoid confu-
sion between graphs and compute nodes, we refer to graph nodes as vertices. Some
commonly used symbols are seen in Table 1.1
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V vertex set
E edge set

PR(v) PageRank of vertex v
PRi(v) PageRank of vertex v at iteration i
V p vertex set of process p
µ Mean time between failures
P set of processes

Table 1.1: Definitions

1.1.1 Graph

A directed graph is a pair G = (V,E) made up of a set of vertices V and a set of
edges that are ordered pairs of vertices E ⊆ {(x, y)|x, y ∈ V }. We call (x, y) an
edge from x to y. We say a graph is undirected when for every edge (x, y) ∈ E with
x ̸= y =⇒ (y, x) ∈ E. We call edges originating from x (e.g (x, y)) out-edges of x
and edges ending in x in-edges of x.

1.2 Related Work

Checkpoint Restart is a method that deals with fail-stop errors. Fail-stop errors are
errors that cause the component experiencing it to stop operating. Different check-
pointing approaches have been researched over the years. The book by Herault and
Robert [19] gives an overview of different general checkpointing approaches. They
differentiate between coordinated checkpoints where all the processes checkpoint to-
gether to create a consistent snapshot and uncoordinated checkpoints where each
process can make its own checkpoint. The goal of uncoordinated checkpoints is to
reload only the failed process. To enable this all messages need to be logged until
their receiver checkpoints, so they can be ”resend” in case of failure. The combina-
tion of both coordinated and uncoordinated checkpoints are hierarchical checkpoints
where the processes are divided into groups, processes of a group checkpoint coor-
dinated and groups use uncoordinated checkpoints between each other.
In the 1970s Young [42] proposed a first order approximation for the optimal time
between two checkpoints, to minimize the overall expected computation time. This
approach was later refined by Daly [11] resulting in a formula for the optimal check-
point frequency based on the mean time between failures µ and a constant check-
pointing cost. The optimal checkpoint frequency according to the Young/Daly for-
mula is f =

√
2µC where C is the time it takes to create a Checkpoint. For iterative

methods were the checkpoint size (cost) may vary or checkpoints are taken only
at specific times in the execution, e.g after completion of a task or an iteration
Du et al. [15] propose a dynamic programming algorithm to calculate the optimal
checkpoint pattern, under the assumption that each iteration consist of n tasks of
different run times and the cost of a checkpoint differs depending on after which
task it is taken. A good way to increase the performance of checkpointing is to de-
crease the checkpoint size. For iterative graph processing, Yan et al. [41] introduce
an application specific checkpointing system, that reduces the amount of informa-
tion that needs to be checkpointed. For example checkpointing only the ranks of
vertices for PageRank but not checkpointing incoming messages or edges. Since the
edges can be reloaded from the input and the messages sent can be recomputed.
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An approach to further reduce the size of a checkpoint is to compress the data that
gets checkpointed. Islam et al. [25] use data aggregation and lossless compression
to improve the performance of the checkpoint and recover routines. There has also
been research for using error bounded lossy compression to further reduce the size
of checkpoints, since lossy compression can achieve a much higher compression rate
than lossless compression. Calhoun et al. [8] use lossy compressed checkpoints for
partial differential equation (PDE) simulations. They show that an upper bound on
the error of lossy compression can be found by masking the error of compression with
the numerical error of discretization. They show that if the solution is accurate to
only 1e-4 then a solution x is indistinguishable from a perturbed solution x̃ = x+ ϵ
when ϵ < 1e-4. Their results boast an overall increase in performance without loss
of accuracy for two specific PDE simulations. Sasaki et al. [36] compress the check-
points of climate applications using wavelet transformation and calculate that they
can reduce the checkpoint time including compression by 83% compared to uncom-
pressed checkpoints under the assumptions that each process possesses 1.5MB of
data that it needs to checkpoint and the I/O throughput of the parallel file system
is 20GB/s. They show that their strongly compressed checkpoints scale better, lead-
ing to a reduced checkpoint time of 83% for a sufficiently large system. With each
variable deviating from their original values by approximately 1.2%. Tao et al. [38]
build a generic, theoretical performance model that considers the impact of lossy
compression for iterative methods and used lossy checkpoints to improve the overall
performance for multiple iterative methods (Jacobi, CG, GMRES). They compare
the performance of checkpoints with lossy compression to uncompressed checkpoints
and checkpoints with lossless compression. By comparing how much time it takes to
create and recover one checkpoint, the increase in iterations compared to a failure
free execution and the overhead of the different checkpointing methods (increase
in execution time when no failure occurs). Qiao et al. [33] proposed a checkpoint
method for iterative converging machine learning. They make use of the self correct-
ing nature of iterative converging ML and restore only partial checkpoints (only the
failed parameters) to reduce the rework cost (increase in number iterations, batches
or epochs until convergence). To further reduce the rework cost they use a different
checkpoint pattern. Instead of checkpointing all parameters every N iterations, they
checkpoint 1

x
of the parameters every N

x
iterations (checkpointing the same amount

of total data in N iterations). The parameters that changed the most since the last
time they were checkpointed, are chosen for the next checkpoint. We compare the
performance of multiple approaches for PageRank like partial recovery and full re-
covery from lossless and lossy checkpoints as well as testing different checkpointless
approaches for recovery. We also see if we can reduce the checkpoint overhead by us-
ing less precise checkpoints or checkpointless methods at the start and adjusting the
precision of the methods based on the convergence of the PageRank algorithm. This
adaptive checkpointing scheme that switches between checkpointless methods and
writing checkpoints based on the convergence of the algorithm is to our knowledge
a novel idea.



2. PageRank

The PageRank algorithm [31, 6] is used by Google search to order the results based
on importance. These days, PageRank is not the only algorithm Google uses to
order the results, but it is the first and most well known algorithm for ordering
webpages. The idea behind PageRank is that the importance of a webpage depends
on the webpages that link to it. But instead of counting the number of links to a
webpage, PageRank takes the importance of the webpage the link originates from
into account. One way to think about the PageRank algorithm would be as a model
for user behavior. Were a random surfer is given a random web page and continues
surfing from there by clicking random links (without hitting back) until they get
bored and restarts from another random page.

2.1 Algorithm

Given a Web-Graph G(V,E), with vertices V the webpages and edges E the links
between webpages. With (u, v) ∈ E when webpage u links to webpage v. Let
PR : V → (0, 1] be the PageRank of a page and L : V → N the number of outgoing
links of a webpage. Let us take a look at the PageRank algorithm 1. Initially
(line 3) every page gets the same amount of PageRank. Here PRk is the PageRank
at iteration k. The PageRank of all vertices gets updated in every iteration as
seen in lines 7 and 8. We explain the equation in line 8 with the random surfer
model. The damping factor d ∈ (0, 1)1 is the probability that the surfer does not
get bored and clicks another link. The first part handles the teleport probability
1 − d, the probability that the random surfer gets bored and is requesting a new
random page (evenly distributed), causing the surfer to ”teleport” to a new random
webpage. Since there are |V | many pages there is a 1−d

|V | probability that he arrives
at a specific page. The second part is the probability that the random surfer arrives
at the page through a link of another page. L(u) =

∑
(u,v)∈E 1 are the amount

of outgoing links from page u. The PageRank PR(u) is the probability that the
random surfer is on page u. Because the surfer clicks random links the probability
that he arrives at a page v through u depends on the amount of outgoing links
of vertex u and the probability d that he clicks another link, thus the probability
is d · PR(u)

L(u)
. When we add all the parts up we get the PageRank of the current

iteration. After calculating the new PageRank values we check for convergence. We
take a look at different convergence criteria in section 2.2. It is important to note
that when each vertex has at least one outgoing edge the sum of all PageRank is
always one (Equation (2.1)). For vertices with no outgoing edges (dangling vertices)
the random surfer has no choice but to request a new random web page. This is
simulated by assuming that dangling vertices have edges to all vertices otherwise we
would loose PageRank [7].

1d is set to 0.85 in the original paper [6]
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Algorithm 1 PageRank

1: procedure PageRank(Graph G, damping factor d)
2: for v ∈ V do
3: PR0(v)← 1.0/|V | ▷ Set initial PageRanks
4: end for
5: k ← 1
6: while not converged do ▷ Begin Iterations
7: for v ∈ V do
8: PRk(v)← 1−d

|V | + d ·
∑

(u,v)∈E
PRk−1(u)

L(u)
▷ Update PageRanks

9: end for
10: k ← k + 1
11: check if converged ▷ Different convergence criteria
12: end while
13: end procedure

Show:
∑
vi∈V

PRk(vi) = 1, with ∀v ∈ V, L(v) > 0∑
vi∈V

PR0(vi) = 1, since PR0(v) = 1/|V | for all v ∈ V

∑
vi∈V

PRn(vi) =
∑
vi∈V

1− d

|V |
+ d ·

∑
(u,vi)∈E

PRn−1(u)

L(u)

= 1− d+ d ·
∑
vi∈V

∑
(u,vi)∈E

PRn−1(u)

L(u)

= 1− d+ d ·
∑
u∈V

PRn−1(u), since
∑
vi∈V

∑
(u,vi)∈E

1 =
∑
u∈V

L(u)

= 1− d+ d · 1 = 1

(2.1)

2.2 Convergence Criteria

There are different convergence criteria. One way is to simply stop after x itera-
tions. Another criterion is to check for every vertex if the difference between last
iterations PageRanks and this iterations PageRanks falls under a tolerance threshold
t (∀v ∈ V, |PRk(v)− PRk−1|(v) < t). But if the graph has more vertices, the thresh-
old would also need to be adjusted since the PageRank values are now smaller. We
do not need to adjust the tolerance threshold if we sum up all the absolute differences
between the PageRank (L1 Norm) as seen in equation (EQ: Sum).∑

vi∈V

(|PRk(vi)− PRk−1(vi)|) < t (EQ: Sum)

Another similar way would be to sum up the squares of the differences between the
old and new PageRank values, see equation (EQ: SquareSum). Which is basically
the L2 Norm except we do not calculate the square root (can be masked in the
tolerance t). ∑

vi∈V

(PRk(vi)− PRk−1(vi))
2 < t (EQ: SquareSum)
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Finally we have a more strict convergence criterion that can be thought of like an
extreme case of the sum criterion where all differences are equal to the maximum
difference between a pair of PageRank values. We call this criterion MaxChange
see equation (EQ: MaxChange). This criterion tolerates a lot less distortion of the
PageRank values since it amplifies the maximum distortion by the number of vertices
(assuming we use the same tolerance t).

|V | ∗max
vi∈V

(|PRk(vi)− PRk−1(vi)|) < t (EQ: MaxChange)

2.3 Power Iteration

To show that PageRanks solution is unique we look at power iteration the algorithm
PageRank is based on. Power iteration is an algorithm that calculates the dominant
eigenvalue λ (highest in absolute value) and the corresponding eigenvector v of a
diagonalizable matrix M (Mv = λv) [29]. In PageRanks case the Power iteration
method works by taking a probability distribution vector k0 (the initial PageRanks)
and improving our current approximation ki by calculating ki+1 = Mki. Here ki
are the PageRanks after the i-th iteration. The iteration matrix M is the matrix
that describes the update step in line 8 of the PageRank algorithm. Power Iteration
converges if M has a dominant eigenvalue and the search vector ki has a nonzero
component in the direction of the dominant eigenvector2. The dominant eigenvalue
of M is always one according to the Perron-Frobenius theorem [32]. The Perron-
Frobenius theorem says that a square matrix K with only positive real number as
elements (greater than 0) has a dominant eigenvalue r (Perron-Frobenius eigenvalue)
that is strictly larger in absolute value than any other eigenvalue ofK. The dominant
eigenvalue of K satisfies the inequalities mini

∑
j kij ≤ r ≤ maxi

∑
j kij where kij is

the entry at column i and row j of K. To understand that the iteration matrix M
of PageRank is always a positive matrix, with the sum of each of its columns being
one, we show an example of how the iteration matrix M is calculated. In Figure 2.1
we see our example graph G and its corresponding adjacency matrix Â.

Â =


0 1 1 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 a

b

c

d

e

Figure 2.1: Disconnected Graph G of adjacency matrix Â and a dangling vertex a

G is disconnected and has a dangling vertex a. We know that dangling vertices
need to be fixed by adding edges from them to all vertices (columns with all 0 in Â

2eigenvector of the dominant eigenvalue
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are transformed to all 1s) [7]. After fixing a the graph G and adjacency matrix Â
changes as seen in Figure 2.2.

Â =


1 1 1 0 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
1 0 0 1 0

 a

b

c

d

e

Figure 2.2: Disconnected Graph G and adjacency matrix Â after ”fixing” dangling
vertex a

After we ”fixed” the dangling vertices we normalise the columns of the adjacency
matrix (sum of each column is 1) since the PageRank gets divided evenly amongst
all outgoing edges of a vertex. After normalising the columns we get the matrix

A =


1
5

1
2

1
2

0 0
1
5

0 1
2

0 0
1
5

1
2

0 0 0
1
5

0 0 0 1
1
5

0 0 1 0


We then calculate the iteration matrix M by introducing the damping factor d and
teleport probability (1− d) to the matrix A. Thus M = d ·A+ (1− d) ·B with B a
matrix of the same size as A with all entries being 1. Using d = 0.85 the standard
value for PageRank we get the following iteration matrix.

M =


1
5

91
200

91
200

3
100

3
100

1
5

3
100

91
200

3
100

3
100

1
5

91
200

3
100

3
100

3
100

1
5

3
100

3
100

3
100

22
25

1
5

3
100

3
100

22
25

3
100


Important to note is that the the teleport probability (d−1) always ensures that M
is a positive matrix and the fixing of dangling nodes as well as the normalising of
columns ensures that the sum of each column of M is one. Therefore the dominant
eigenvalue r of M is always one and r has a unique normalised eigenvector. In other
words the ranking of the vertices is unique for a fixed dampening factor d. Also since
power iteration converges as long as the starting vector has a nonzero component
in the direction of the dominant eigenvector, PageRank converges towards the same
solution for any arbitrary ranking PR with ∀v ∈ V, PR(v) > 0 and

∑
v∈V PR(v) = 1

[40].
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V pi V pi→p0 V pi→p1 . . . V pi→pn

Figure 2.3: Structure of newScore, ghost vertices are grouped by process they belong
to

2.4 Implementation

To make the PageRank algorithm parallel we divide the vertices amongst the differ-
ent processes. So that every process p has its own set of vertices V p with no overlaps
between processes (meaning if p, q ∈ P , then V p\V q ̸= ∅ =⇒ p = q). Each process
also possesses the outgoing edges of its vertices Ep = {(u, v) ∈ E|u ∈ V p, v ∈ V }.
The main challenges are the outgoing edges that lead to a vertex of a different pro-
cess. For performance reasons we do not want to sent the messages immediately, but
instead bundle the communication data and send it all at once. To bundle the com-
munication data each process has ”ghost” vertices V ∗p = {v|(u, v) ∈ Ep, v /∈ V p},
the vertices of other processes whose PageRank values the vertices of process p con-
tribute to. This leads us to the parallel PageRank algorithm seen in algorithm 2.
Here we have two arrays score with |V p| entries, the local PageRanks of the last
iteration and newScore with |V p + V ∗p| entries containing the PageRanks of the
current iteration and the PageRank updates for the ghost vertices V ∗p. At the be-
ginning we distribute the PageRank evenly amongst all local vertices (score). We
set newScore to the teleport probability for local vertices and to zero for ghost ver-
tices. In lines 6 to 8 we divide the current PageRank of each local vertex amongst
its neighbouring vertices. To allow indexing with the vertices indices, the local in-
dices for vertices are adjusted. In line 11 we handle the communication, sending the
PageRank values of the ghost vertices to the corresponding process and receiving
the PageRanks values for local vertices. Let V pi→pj = {v ∈ V pj\V pi |(u, v) ∈ Epi}
be the vertices of process pj that process pi sends PageRank to, then newScore is
structured as seen in Figure 2.3. The structure of newScore allows us to handle the
communication of PageRank updates in one MPI Alltoallv call. After distributing
the PageRank updates we handle the dangling vertices by summing up their values
and distributing them evenly amongst all vertices. After the communication phase
newScore contains the updated PageRank values of the current iteration, so we can
now check for convergence. Afterwards in lines 13 to 15 the new PageRank values
are moved into score and newScore is reset in preparation for the next iteration.
Before beginning the next iteration we check if we should checkpoint the current
PageRank values.
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Algorithm 2 PageRank Parallel

1: procedure PageRank(Graph G, damping factor d)
2: ∀ v ∈ V p, score [v]← 1

|V |
3: ∀ v ∈ V p, newScore [v]← 1−d

|V | ▷ account for teleport probability

4: ∀ v ∈ V ∗p, newScore [v]← 0 ▷ Ghost vertices
5: while not converged do
6: for v ∈ V p do
7: for (v, u) ∈ Ep do

8: newScore[u]← newScore[u] + d · score[v]
L(v)

9: end for
10: end for
11: SendAndReceiveMessages
12: check convergence
13: ∀ v ∈ V p, score [v]← newScore [v].
14: ∀ v ∈ V p, newScore [v]← 1−d

|V | .

15: ∀ v ∈ V ∗p, newScore [v]← 0.
16: MakeCheckpoint?
17: end while
18: end procedure



3. Approaches

In this Chapter we take a look at various approaches we apply to make PageRank
fault tolerant for fail-stop faults. When a process p fails, we loose the PageRank for
the set of vertices of process p namely V p. We assume that we are able to reload
the lost graph data of p from the input. Therefore our goal is to set/restore the
lost PageRank values PR(vi) = ? for vi ∈ V p in a way that minimizes the amount
of extra work done compared to a faultless execution. But we do not loose all in-
formation about the PageRanks of V p, since the sum of all PageRanks is always
1. Thus we can calculate the sum of the lost PageRanks (eq. 3.1). Furthermore
every vertex has a minimum PageRank based on the damping factor d and the total
number of vertices (min(PR(vi)) =

1−d
|V | ) In the random surfer model this minimum

value is the chance that the surfer lands on the web page by requesting a new ran-
dom web page. Therefore we know that all lost PageRanks values must lie in the
interval [1−d

|V | ,
1−d
|V | + (missing sum(p)− |V p| · 1−d

|V | ]. We use this fact in the various
approaches we describe in this Chapter. First we take a look at various check-
pointless approaches where the sum of the missing PageRanks is all the information
available. Later we look at approaches where checkpoints are available and see how
we can utilise the information of older PageRank values.

missing sum(p) =
∑
vi∈V p

PR(vi) = 1−
∑

vi∈V/V p

PR(vi) (3.1)

3.1 Checkpointless Approaches

When a process fails for example due to a hardware failure we loose the PageRank
values of the process. If we have no checkpoints, we only know the total amount of
PageRank the process had. We do not want to restart the algorithm, since we lost
only a fraction of our results. But we do not know the distribution of the PageRank
of the lost vertices. We have to make an assumption about the distribution. We
take a look at three different checkpointless approaches that use different methods
to distribute the PageRank.

3.1.1 Divide Even

Divide Even is the naive method. The method works by taking the sum of lost
PageRanks and dividing it evenly among the lost vertices V p as seen in equation (EQ:
Divide Even). It resets the PageRank of lost vertices to their starting values adjusted
based on the amount of missing PageRank. This approach fails to capture any
nuance of the actual distribution of the PageRank among the vertices. For example
if we lose a couple of vertices with a large amount of PageRank and the other lost
vertices have a small amount of PageRank after restoring they would all have the
same PageRank.

PR(vi) =
missing sum(p)

|V p|
(EQ: Divide Even)
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3.1.2 Based On In Edges

With this approach we leverage the information of the graphs structure to make an
assumption about distribution of the PageRank amongst lost vertices. We assume
that vertices with more incoming edges are more likely to have a higher PageRank
than vertices with fewer incoming edges, since more sources contribute to their
PageRank. We then assign each restored vertex the minimum PageRank value,
divide the remaining sum based on the number of in edges of a vertex vi in proportion
to the number of total incoming edges of V p as seen in equation (EQ: boie).

m = missing sum(p)− |V p|1− d

|V |

PR(vi) =
1− d

|V |
+m · |{e′ | (u, vi) ∈ E}|

|{e | (u, v) ∈ E, v ∈ V p}|

(EQ: boie)

3.1.3 Local Iteration

The last checkpointless approach we look at is to set the PageRanks using one of
the other two approaches (Divide Even or Based On In Edges) mentioned above and
then running x local iterations of the PageRank algorithm. A local iteration here is
defined as cutting out the communication that would usually occur when a vertex
receives an amount of PageRank from a vertex v /∈ V p or sends an amount of its
own PageRank outside of V p. We need to account for these outgoing edges of V p

to make sure that the sum of all PageRanks is still one after the local iterations.
We try two different methods to handle outgoing edges. The first one is to ignore
them by reducing L(vi) by the amount of outgoing edges of vi. Another method is
to reflect the PageRank on outgoing edges back to the vertex that would send it.
This idea is mainly useful for undirected graphs where the vertex would receive some
PageRank back and it also ensures that a vertex vi ∈ V p with a lot of edges that
point out of V p and few internal edges does not increase the internal PageRanks too
much. The main idea for local iterations is that most of the work of the algorithm is
communication between processes so by ignoring communication we might restore
some of the finer details of the PageRank distribution without incurring the cost of
communication. The probability that the surfer teleport to a local page needs to
be adjusted based on the amount of PageRank the process has ( 1−d

|V p| ·
∑

v∈V p PR(v))
otherwise we gain PageRank.

3.2 Checkpoints

The main problem with checkpointless approaches is that towards the end of the
calculation we need to restore more precise PageRank values (as we see in sec-
tion 4.1). To solve this problem we can write checkpoints when the performance
of checkpointless approaches deteriorate. When we write checkpoints we have a lot
more information to fall back on namely the PageRanks of previous iterations or an
approximation of the PageRanks if we used lossy compression to create the check-
points. In the following we examine the different ways we use this information as
well as describing different compression methods for writing checkpoints.
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1 bit 11 bits 52 bits

± Exponent Mantissa

Figure 3.1: IEEE 754 double precision representation.

3.2.1 LoadAll and LoadFailed

For the following section we will assume we have a checkpoint of old PageRanks
PRcheckpoint(v). The naive approach of using this checkpoint is to set all PageRanks
to the checkpointed values and then continue calculation from there (eq. LoadAll).

PRcurrent(v) := PRcheckpoint(v) (LoadAll)

We call this approach LoadAll. If the PageRank values where lossy compressed
it can lead to an increase or decrease in the total PageRank, which we repair by
calculating the missing/excess PageRank and then distribute it equally amongst all
vertices. When the checkpoints are lossless compressed we know that we have to
redo the iterations computed since the last checkpoint. But for the processes that
did not fail we already have the results after calculating all those extra iterations.
That means when we load the checkpoint for all processes, we also discard all that
extra information. Which brings us to the LoadFailed approach, here we set only
the PageRanks of the failed process all other processes get to keep their ranks. We
then scale the loaded PageRank values relative to the missing sum of the current
iteration as seen in (eq. LoadFailed).

PRcurrent(v) := PRcheckpoint(v) ∗ missing sum(p)∑
u∈V p PRcheckpoint(u)

(LoadFailed)

3.2.2 Compression Methods

We try to reduce the time it takes to create a checkpoint by compressing the data be-
fore checkpointing it, since smaller checkpoints are faster to create. In the following
we explain eight different compression methods.

No Compression (Lossless)

As a baseline for comparison, we checkpoint the uncompressed PageRank values.

Exponent (Lossy)

Here we truncate the floating point values saving only the first x bits/bytes. We
do not truncate the exponent and sign making x at least 12 for double precision.
Figure 3.1 shows the representation of an IEEE 754 double precision number.

Bucket (Lossy)

For bucket checkpoints, we group the values in buckets of size x and then checkpoint
the sum of each bucket. During decompression we divide the value of each bucket
evenly amongst the vertices of the bucket. In Figure 3.2 we show an example for
x = 4. The PageRank values are divided into buckets of size four. Then we calculate
the sum for each bucket. If the number of values (|V p|) is not dividable by x the
last bucket has size |V p| mod x.
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Figure 3.2: The original values are divided into groups of size x = 4. Each group is
then summed up. The sums of the different groups are then checkpointed.

Cutoff (Lossy)

Under the assumption that the most important vertices, are vertices with a high
PageRank and other vertices are less important for convergence we cut off all values
below a cutoff threshold η. We can then either perform a run-length encoding by
setting cutoff values to 0 or saving only non cutoff values and memorising which
values we saved. When we restore the values we can set the cutoff values either to
the cutoff threshold η, the minimum PageRank or random values between.

ZFP (Lossy)

ZFP is a lossy compression library for floating-point and integer arrays based on
an algorithm by Peter Lindstrom [28]. The current version of the algorithm can
be found in the paper by James Diffenderfer et. al. [13]. The algorithm has the
following 8 steps.

1. Group the input data into 4d blocks with d being the dimension of the input
data (d = 1 in our case).

2. Transform the blocks into block floating point numbers. This means using a
single common exponent for all 4d values of a block (the highest exponent of
the values). In Figure 3.3 we see an example for the transformation of four
32bit floating point numbers into block floating point numbers with a common
exponent. This step is lossy because it can cause truncation of numbers with
a smaller exponent than the common exponent.

3. Transform the block floating point numbers using a near-orthogonal transform,
similar to the discrete cosine transform used in JPEG, to decorrelate the values
of a block.

4. Skipped in our application (d = 1).

5. Convert the transformation coefficients from two complement representation
into negabinary (binary numbers with base -2). The advantage of negabinary
is that they do not have a dedicated sign bit instead the highest non 0 bit
encodes the sign. For small coefficients this leads to many leadings zeros.
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(Step 1 + 2)

0 0 0 0 0 0 0 1 1 0 0 0 . . .

0 0 0 0 0 0 1 0 1 1 0 0 . . .

0 0 0 0 0 1 0 0 0 1 1 0 . . .

0 0 0 0 0 0 1 1 1 0 1 0 . . .

+ 0 0 0 1 1 0 . . .

+ 0 0 1 1 1 0 . . .

+ 1 0 1 1 0 0 . . .

+ 0 1 1 1 0 1 . . .

Common Exponent

Signed Integer (32bit)

0 0 0 0 0 1 0 0

Transform into
floating block number

Exponent (8 bits) Mantissa (23 bits)Sign

+

+

+

+

Figure 3.3: Transformation of four 32 bit floating point numbers into block floating
point numbers with a common exponent

(Step 6)

a31 a30 . . . a0

Coefficient a Coefficient b Coefficient c Coefficient d

b31 b30 . . . b0 c31 c30 . . . c0 d31 d30 . . . d0

a31 b31 c31 d31 a30 b30 c30 d30 . . . a0 b0 c0 d0

Reorder by bit plane

Figure 3.4: Ordering the bits of the coefficients by bit plane (from most significant
bit to least significant bit)
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6. Order the bits by bit plane instead of by transformation coefficient. Starting
with the most significant bits. Meaning we start with the most significant
bits of the coefficients followed by the next most significant bits as seen in
Figure 3.4.

7. Compress the bit planes (lossless). Using the fact that the coefficients have
many leading zeros that do not need to be explicitly encoded. Emit the lowest
n bits unchanged. Here n is the highest set bit of all previous encoded bit
planes. Then perform a variable length encoding on the remaining 4d−n bits.
If there are no more set bits in the bit plane the encoder emits a 0, otherwise
it emits a 1 and all the bits up to the next 1 then it test if there are more ones
left in the bit plane.

8. In the final step the encoder emits one bit at a time, each bit increasing the
accuracy of the approximation. Truncating the emitted stream at any point
still allows the reconstruction of the values of the encoded block. ZFP has 3
different modes. The modes decide when to truncate the stream. The mode
we use is the Fixed-precision mode.
Fixed-precision mode: The user sets the number of bit planes to encode. Here
the amount of bits the encoder emits for each block can vary.

ZFPs fixed-precision mode is better for relative error. Allowing it to automatically
adjust to expected PageRank values based on the number of vertices of the graph.

ZFP (Lossless)

ZFP has another mode called reversible mode that allows lossless compression. Most
of the steps are the same steps from lossy zfp with the main differences occurring
in steps 2, 3 and 8 the steps that can lead to a loss in precision in the compressed
values. In step 2 the algorithm test the block floating point numbers to see if
the transformation was lossless if it was lossless it continues as usual otherwise
it interprets the floating point numbers as integers by type punning (reinterpret
the bits as an integer) and continues from there. The transform in step 3 is also
slightly modified and in step 8 the encoder truncates no set bits. The algorithm still
truncates the least significant bits planes that are all 0.

SZ3 (Lossy)

SZ3 is a lossy compression library that allows error bounds [27, 12, 39]. The algo-
rithm we use works by first calculating an absolute error bound η based on the input
data by finding the middle of the data range and multiplying it with the set relative
error bound. In the next step a predictor estimates the value of a data points. The
predictor that is used depends on the internal parameter optimization of SZ3. SZ3
decides between using spline-interpolation prediction (linear or cubic) and Lorenzo
prediction. To select the best predictor SZ3 uses a uniform sample of the data (3%)
and performs trial runs with the different predictors on it. The predicted points
undergo linear quantization to transform the floating point variables into integer
variables and more importantly to enforce the error bound. Linear quantisation
works as follows. Let x be the actual value and p0 the predicted value the calculated

integer value intx is then intx = round
(

(p0−x)
η

)
in other words we have bins of equal
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η 2η

p0p−1 p1p−2 p2p2

. . .. . .

x

Figure 3.5: Linear Quantisation: Assign the value x to the closest prediction point
p with p0 the actual prediction. All prediction points are exactly 2η apart with
absolute error bound η.

intervals of size 2η and we find which bin x belongs in (Figure 3.5). If the number
falls out of the range of the bins mark it and save it uncompressed. The resulting
integers are then Huffman encoded and finally dictionary encoded.
Lorenzo Predictor: Predicts the value of the current data point based on the already
predicted preceding data points. In our case (1-dimension) the lorenzo predictor
works as follows, let di be the i-th data point and predL the Lorenzo predictor.
The 1st order prediction for di would then be predL(di) = d′i−1, where d′i−1 is the
reconstructed value after linear quantisation (the decompressed value of di). Af-
ter prediction of a value di, it undergoes linear quantisation and the reconstructed
value d′i is used for further predictions. The 2nd order Lorenzo predictor would be
predL(di) = 2 · d′i−1− d′i−2. Whether first or second order prediction is used depends
on the results of the trial runs.
Spline Interpolation prediction: Spline interpolation prediction works by finding a
polynomial that goes through already predicted/known data point to predict the
data point that lies in the middle of the points. For linear interpolation two points
are needed and the resulting spline is the line that connects them. For cubic spline
interpolation SZ3 uses 4 points (Figure 3.6) and the spline is made up of three third
degree polynomial functions f1, f2, f3 connecting each neighbouring point. The first
and second derivative needs to be the same where the polynomial functions connect
(e.g f ′

1(i − 1) = f ′
2(i − 1), · · · ). SZ3 uses not-a-knot cubic splines which means the

third derivative is also the same (when only four points are used). SZ3 does not
solve the linear equation but uses a closed-form solution for both linear and cubic
spline interpolation.

• Linear predLin(di) =
1
2
di−1 +

1
2
di+1

• cubic predCube(di) = − 1
16
di−3 +

9
16
di−1 +

9
16
di+1 − 1

16
di+3

These solutions assume that we know all odd numbered data points. The actual
predictor avoids this by predicting the data through multiple steps. First the data
is divided into smaller blocks (size 32). The prediction uses multiple levels on ev-
ery block. We show an example of a multilevel linear prediction for block size 5
in Figure 3.7. Here L1-L5 denote the level. In the first level SZ3 predicts d0 from
0. Between each level the predicted values undergo linear quantisation we denote
the reconstructed values, after linear quantisation as d′i. In level two the recon-
structed data point d′0 is used to predict d5. This continues until level five where
all data points of the block have been predicted. It works similar for cubic spline
interpolation.
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i− 3 i− 1 i i+ 1 i+ 3

d′i−3

d′i−1

d′i+1

d′i+3

f1(x) f2(x) f3(x)

x

y

Figure 3.6: Cubic Spline prediction: Cubic Spline with not-a-knot condition (third
derivative equal at edges). Red point is the predicted value for di

d1 d2 d3 d4 d5 predict d1 from 0L1:

d′1 d2 d3 d4 d5 predict d5 from d′1L2:

d′1 d2 d3 d4 d′5 predict d3 from d′1 and d′5L3:

d′1 d2 d′3 d4 d′5
predict d2 from d′1 and d′3
predict d4 from d′3 and d′5

L4:

L5: d′1 d′2 d′3 d′4 d′5

Figure 3.7: SZ3: Multilevel linear spline interpolation prediction

Differential Checkpoints (Lossy)

The idea behind differential checkpoints is that the changes of PageRank values
become smaller with each iteration (they converge). To make use of that feature we
write a full checkpoint of all PageRank values every x checkpoints and in between
the full checkpoints we write x − 1 checkpoints of the difference between the old
PageRank values (at the time of the last full Checkpoint) and the current values.
We compress these checkpoints more lossy (less strict error bound). The secondary
checkpoints therefore have an ”updating”effect for values that have changed the most
since the last full checkpoint. The tradeoff here is that we have an increased space
requirement since we need to remember the PageRanks of the last full checkpoint.

3.2.3 Calibration

We need to calibrate the different compression methods we use. To this end we
simulate faults. To test how precise checkpoints need to be, how often we need to
write checkpoints, if we can gain performance increases by creating more precise
checkpoints as the algorithm gets closer to convergence and if we can reduce the
number of checkpoints we write by using checkpointless approaches (while they are
viable).
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3.3 Lossy Communication

Finally we want to test if we can speed up PageRank by compressing the commu-
nication data inspired by C-Coll [22]. This has less to do with fault tolerance but
we want to try a different application for lossy compression in PageRank. One ob-
vious problem of using lossy communication is that we lose the property that all
PageRanks sum up to 1. To make sure we keep that property and to guarantee con-
vergence every x iterations there needs to be a repair phase where we add/subtract
the missing sum and after a certain amount of iterations communication should not
be lossy otherwise we can not guarantee convergence.



4. Experiments

The experiments are run on the SuperMUC-NG which consist of 6,336 thin compute
nodes each with 48 cores and 96 GB memory and has an internal network speed
of 100 Gbit/s. We run the following experiments on 32 nodes so a total of 1536
cores unless stated otherwise. We use randomly generated BA (Barabási-Albert
[1]) graphs with 800Mio vertices and 1.6Bn edges and GNM (Erdos-Renyi Graphs
[17]) graphs with 2Bn vertices and 8Bn edges unless stated otherwise. The Graphs
are generated with KaGen [18, 35]. In the GNM graph model (G(n,M)) a graph is
chosen uniformly at random from the set of graphs with n vertices andM edges. The
BA graph model works by adding the vertices one after another and using preferred
attachment, meaning that the more links a vertex has the more likely it is to get
new links. This causes the first vertices added to have the most links. For PageRank
we set the damping factor to d = 0.85 as described in the original paper [6]. We use
two different settings regarding the tolerance t. Setting 1 uses the same tolerance
t = 10−9 regardless of convergence criterion, making Sum and MaxChange converge
slower. For Setting 2 we adjust the tolerance t for both Sum and MaxChange to
converge about as fast as SquareSum tSum = 10−7, tMaxChange = 10−2. To avoid
confusion between these two settings we say normal tolerance (tSquareSum = 10−9),
low tolerance (tSum = 10−9) and strict tolerance (tMaxChange = 10−9) to describe the
different conversion criteria when we use Setting 1. The parameter for tolerance differ
between different PageRank implementations. The strict and low tolerance of setting
1 can lead to very slow convergence [34]. We create checkpoints using ReStore [23]
unless stated otherwise. ReStore creates checkpoints in memory distributed amongst
the different compute nodes. For ReStore we use a replication of 4, meaning 4 copies
of the checkpointed data are distributed amongst the different nodes. We simulate
faults by assuming that one of the cores looses its PageRank values. We then take
the failed core as a replacement and restore the lost PageRank values on the failed
core according to our different approaches.

4.1 Checkpointless Approaches

To test how well the checkpointless approaches perform depending on when the fault
occurs. We simulate a fault every 10% of a faultless execution, causing one fault
per total PageRank calculation. Example given if a faultless execution of PageRank
would take 100 iterations, we simulate a fault at the 10th, 20th, ..., and 90th iter-
ation. Figure 4.1 shows the performance of the different checkpointless approaches
depending on when the fault occurs for different tolerances. The x-axis plots at
which percentile of a faultless execution the failure occurs and the y-axis shows the
increase in iterations relative to the number of iterations a faultless execution takes.
The red line (restart) shows the performance of restarting PageRank instead. We
see that all approaches fall below the restart line and thus outperform the naive
approach of restarting from the beginning. For Local Iteration we use Divide Even
to restore the PageRank values and perform 10 local iterations. We see that Divide
Even outperforms the Local Iterations in our tests meaning that the PageRanks, the
local iteration converge to differ from the actual PageRanks which causes a bigger
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disruption when global calculations resume. We also see that Based on inEdges
performs similar to Divide Even. Divide Even tends to perform slighly better for
early faults as seen in Figure 4.1a but gets outperformed for later faults or when
the tolerance t is strict as in Figure 4.1b. But using graph structure to assume the
PageRank distribution as we do in Based on inEdges can also be hurtful as seen in
Figure 4.1c which shows the performance of the different approaches for the it-2004
graph (crawl of the .it domain) where the PageRanks restored by Based on inEdges
perform worse than those restored by Divide Even. When we adjust the tolerance
so that all the convergence criteria converge as fast as with normal tolerance the
checkpointless methods also behave similar as they do for normal tolerance giving
us an average recomputation cost of 8∼15% for Divide Even when one fault occurs.
Furthermore since for the first 40% of the PageRank calculations Divide Even tends
to not incur any extra iterations when using normal tolerance (or adjusted conver-
gence criteria). We consider only writing checkpoints after the 40% mark. We can
estimate the progress of the PageRank algorithm based on how close PageRank is
to convergence.

4.2 Calibration for Checkpoints

We calibrate the compression methods to minimize the cost of faults while also
keeping the cost of checkpointing low. The parameters that we calibrate are the
checkpoint frequency f and also the precision of the checkpoints (for lossy com-
pression). Since the checkpointing cost is proportional to the amount of vertices,
we set the checkpoint frequency inversely proportional to the amount of vertices
(e.g checkpointing every |V |

x
seconds). To calibrate we test the different parameters

we simulate 1 to 10 faults after 50% completion in each calculation. We begin by
searching for a low checkpoint frequency for uncompressed checkpoints that reduces
the amount of extra iteration incurred by a fault when we restore only the lost
PageRanks (LoadFailed). After finding a good checkpoint frequency we calibrate
the precision for lossy compression methods. We also check if lowering the check-
point frequency allows us to use less precise checkpoints. In Figure 4.2 we can see
how the precision of ZFP and the checkpoint frequency impact the increase of it-
erations caused by a fault, as well as the overhead for writing checkpoints. On the
x-axis we have different precision settings for ZFP where ZFPi+1 is more precise
than ZFPi. We notice that more precise checkpoints are better for avoiding an
increase in iterations than more frequent checkpoints.

4.2.1 Calibration Data

In Figure 4.3 we see how much the different aspect of the recovery affect the increase
in execution time. The plots show the data for 2 faults occurring during computa-
tion. The y-axis shows the increase in run time in % and the x-axis shows different
settings for the compression methods (higher index means more precise). On the
left side we plot the results for ZFP and on the right side for SZ3. We see that the
biggest cost factor is an increase in iterations which can be reduced by increasing the
precision of the compression without increasing the checkpoint overhead too much.
Also the cost for restoring data seems negligible. So to get the best performance in
case of faults using precise checkpoints to decrease the amount of work lost tends
to perform better. This also shows, that there is not much to be gained by making



4. Experiments 21

0 20 40 60 80
Error at % of faultless execution

1.0

1.2

1.4

1.6

1.8
Ite

ra
tio

ns
 re

la
tiv

e 
to

 fa
ul

tle
ss

 e
xe

cu
tio

n Checkpointless Approaches (Normal Tolerance)
Divide Even
Based on inEdges
Local Iteration
restart

(a) Performance comparison for Normal Tolerance
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(b) Performance comparison for Strict Tolerance
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(c) Unfavorable PageRank approximation by Based on inEdges (empirical graph)

Figure 4.1: Performance comparison for Checkpointless Approaches
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Figure 4.2: The plots shows the impact higher checkpoint frequencies and more
precise checkpoints have on the Checkpoint overhead and the increase in Iterations
after a fault for ZFP.

checkpoints more precise the closer we are to converging, since it barely effects the
checkpoint overhead while also potentially incurring a larger cost due to additional
iterations.

4.3 Calculations

Based on the calibration data we try to estimate a good precision setting for the
different compression methods depending on the MTBF (mean time between fail-
ures). In equation (4.1) we show how we calculate this for a parameter setting s and
a MTBF µ. First we calculate an estimation of the extra time the algorithm needs
if a fault occurs. We call this extra time CFault(s). CFault(s) consist of the time to
restore a checkpoint and the assumed amount of extra iteration time including addi-
tional checkpoints for the given setting s. Here we assume that the amount of extra
iterations caused by a fault is consistent. We calculate the number of faults we ex-
pect in an execution by dividing the run time without faults TnoF (s) by the MTBF.

The increase in time because of faults is then TnoF (s)
µ
∗ CFault(s). Since the calcula-

tion time is now larger, there is also more time for faults to occur. The expected
amount of extra faults caused by the first set of faults would then TnoF (s)∗CFault(s)

µ2

and the extra time spend for this second set of faults TnoF (s)∗CFault(s)
2

µ2 . This gives us

the equation for TheoreticalT ime(s, µ) in equation (4.1). The theoretical run time
for a MTBF µ converges when CFault(s) < µ allowing us to simplify the equation as
seen in equation (4.1).

TheoreticalT ime(s, µ) = TnoF (s) ·

(
1 +

∑
i∈N

(
CostFault(s)

µ

)i
)

TheoreticalT ime(s, µ) =

{
∞, if CostFault

µ
>= 1.

TnoF (s) + TnoF (s) ∗ CostFault
µ−CostFault

, otherwise.

(4.1)
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Figure 4.3: How strong the run time is effected based on the precision of the com-
pression method

4.3.1 Theoretical Cost

In Figure 4.4 we show a plot for the Theoretical Cost function for different ZFP
precision settings when we use the low tolerance settings. On the x-axis we have the
MTBF µ in seconds and on the y-axis we have the expected increase in runtime in
% compared to a faultless checkpointless execution. We show 3 ZFP settings with
different precision from our calibration data (higher index means more precise). We
see that if the MTBF µ is large enough the checkpoint overhead is more significant
than the increase in iteration since faults are more unexpected. We see that if faults
are rare enough (high MTBF) lower precision are preferable to keep the checkpoint
overhead down. But since the execution time for our data is 1∼2 minutes and
the cost of a fault may be different for longer running instances of PageRank it is
uncertain whether or not they would behave similar.

4.3.2 Expected Runtime (Divide Even)

We calculate how the expected runtime of Divide Even changes based on the MTBF
µ and the runtime of PageRank without faults T . We assume the PageRanks are
calculated with normal tolerance where Divide Even works best. We have seen in
figure 4.1c that the increase in iterations depends on when the fault occurs. For these
calculations we are going to assume that every fault is the worst case and causes 50%
extra iterations (0.5 · T ). We can calculate the expected runtime for Divide Even
the same way as for checkpoints. The TheoreticalRuntime/Cost = T · (1+ 0.5·T

µ−0.5·T )
which converges when µ > 0.5 ·T . We now calculate when Divide Even outperforms
a checkpointing approach. We assume that the checkpointing approach causes no
extra iterations and the recovery time can be disregarded (CostFault = 0). Let z =
TnoF (s)−T

T
be the relative checkpoint overhead in %. We calculate when the extra cost

for faults for divide even intersects with the checkpoint overhead (Equation (4.2)).
For example a checkpoint overhead of 1% is expected to be outperformed by Divide
Even when the MTBF µ is 50.5 times larger than the runtime of the PageRank
instance T .
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T · 0.5T

µ− 0.5T
− z · T = 0

µ

T
=

z + 1

2z
, With µ > 0.5 · T and z > 0

(4.2)

4.4 LoadAll vs LoadFailed
We examine the difference between loading all checkpoints and loading just the
failed PageRank values. For the following we simulate a fault at 60, 70, 80, 90% of
a faultless execution (1 fault per calculation). We test if LoadFailed can outperform
LoadAll. In Figure 4.5 we see the results. On the y-axis the relative increase in
iterations for LoadAll compared to LoadFailed

(
LoadAll

LoadFailed

)
. The results are grouped

by the strictness of the tolerance. We see that for normal and low tolerance settings
LoadFailed clearly outperforms LoadAll, with LoadAll on average needing 5% more
iteration than LoadFailed. An exception here is SZ3 where LoadFailed outperforms
LoadAll even more, this is not because LoadFailed works better for SZ3 but instead
LoadAll tends to take extra iterations to complete. Since SZ3 works by casting all
values as multiples of the error bound (Linear Quantisation) most values loose or gain
some PageRank during decompression which when we load all checkpoints leads to
small distortions on all vertices which sum up when we calculate convergence. When
we have a very strict tolerance setting LoadAll and LoadFailed are more equally
matched with LoadFailed still performing slightly better in the median. Because
the tolerance is strict the PageRank values need to be very precise so we often incur
the iterations we lost by loading a checkpoint as recomputation cost regardless of
whether we load all or just the failed checkpoint.

4.5 Compression Comparison
Exponent, Bucket, and Cutoff compression do not perform well, they either cause a
significant increase the recomptutation cost (more than the iterations lost) or barely
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Figure 4.5: Increase in Iteration for LoadAll compared to LoadFailed

compress the data. In Figure 4.6a we see the increase in execution time when no
faults occur while writing checkpoints. On the y-axis we see the increase in time
relative to a faultless checkpointless execution and on the x-axis we have different
compression methods. The checkpoint overhead can be kept under 5% and for
the best performing compression ZFP the median checkpoint overhead lies around
1%. Similar in Figure 4.6b we see the performance of the different compression
methods when a fault occurs. Here we simulate a fault at 60, 70, 80 and 90% of a
faultless execution. We see that the increase in calculation time tends to be less then
10%. Again ZFP performs slightly better than the rest with a median time increase
of 1∼2%. In Table 4.1 we see the compression rate of the different compressors
after calibration. The compression rate is the uncompressed size divided by the
compressed size. When considering space concerns SZ3 is optimal for writing small
checkpoints but it also has a larger compression overhead.

Compressor Compression rate
SZ3 4.6∼7.6
ZFP 4∼4.4

ZFP Lossless 1.07∼1.2

Table 4.1: Compression Rate of the different compressors for normal Tolerance

4.5.1 Differential Checkpoints

For differential checkpoints we write full checkpoints with ZFP, with the same cal-
ibration as if we would use only ZFP. In between the full checkpoints we write 3
differential checkpoints compressed with SZ3. The differential checkpoints are a lot
stronger compressed compared to the full checkpoints as there purpose is to update
values that have changed a lot since the last checkpoint. The differential checkpoints
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Figure 4.6: Performance of different checkpoints on synthetic graphs (32 nodes 48
cores each)
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are about 25% percent faster than the full checkpoint and have a compression ratio
of ca 2000:1. Since the differential checkpoints are so strongly compressed they in-
crease only the total checkpoint size by ca 2%. In total using differential checkpoints
lowers the overhead compared to using only ZFP checkpoints by around 16%.

4.5.2 Empirical Graphs

After seeing the performance on generated graphs we test how well the calibrated
settings perform on empirical graph instances. We use graphs from the Laboratory
of web algorithms [2, 4]. Namely the it-2004 (41Mio vertices, 1.1Bn edges), the
sk-2005 (50Mio vertices, 1.9Bn edges), the uk-2005 (39Mio vertices, 900Mio edges)
and the arabic-2005 (22Mio vertices, 639Mio edges) graph which are all webcrawls
gathered by the UbiCrawler [5].
In Figure 4.8 we see the performance of the different compression methods on empir-
ical Graphs. Like in the last section we have a fault at 60, 70, 80 and 90% completion
of a faultless execution. In most of our test the faults caused no extra iterations. But
we can notice some outliers for SZ3. The calibration of SZ3 did not as easily transfer
to the empirical data sets. The cost and checkpoint overhead for ZFP are around
2∼3%. The checkpoints work well even for empirical graphs but since the empirical
graph instances have a lot less vertices and we base the checkpoint frequency on the
number of vertices we generally have a higher checkpoint overhead as seen in Fig-
ure 4.7. The best performing method here are differential checkpoints with a median
checkpoint overhead of 1∼3%. We also see that the checkpoint overhead when using
the Sum convergence criterion is higher. This is the case because our calibration to
avoid writing checkpoints while checkpointless approaches are still sufficient is not
as good adjusted as for the other convergence criteria. Causing Sum to write up
to 40% more checkpoints. We also notice that Lossless ZFP performs worse than
No Compression since the overall checkpoint including compression time is larger.
The checkpoint time is also larger in our synthetic experiment (figure 4.6a) but the
overall performance of Lossless ZFP was still better than No Compression possibly
due to the different memory access.

Big Graphs

We test how well the checkpoints work on larger graph instances. These graphs are
also from the Laboratory of web algorithms [2, 4] and were gathered by BUbiNG
[3]. We use the gsh-2015 (988M vertices, 33B edges) and uk-2014 (787M vertices,
47B edges) graph instances. For these graph instances we use 100 compute nodes
48 cores each. We again simulate faults at 60, 70, 80 and 90%. We see the result
in Figure 4.9. We see that the checkpointing overhead is a lot lower for these
bigger graphs because they have more vertices and thus checkpoint less frequent.
But overall the performance of the different checkpointing methods is similar to the
experiments on smaller graphs with less compute nodes.

4.5.3 SZ3 predictor

We test how well the predictor works for our PageRank values by testing it against
using only linear quantisation (a smallest unit). We use the same error bound as
we do for SZ3 and look at the error distribution, the difference between the actual
PageRank values and the compressed PageRanks. In Figure 4.10 we show the error
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Figure 4.9: 100 Nodes each 48 Tasks, results for no fault and 1 Fault on gsh-2015
and uk-2014 graphs ca 800M∼1B vertices and 30B∼50B edges

distribution when using the value prediction of SZ3 and just rounding every value
to a nearest smallest number as well as the correlation between the PageRanks of
vertices with neighbouring indices. On the left side we see the results if the vertex
indices a not randomly permuted we see that the correlation between PageRanks of
neighbouring indices is quite high (Figure 4.10b). On the right side we see the values
after randomly permuting the vertex indices, here we have little correlation between
values. When we look at the histogram of the error distribution in Figure 4.10a we
see that the predictor of SZ3 produces a much better error spread than simply using
linear quantisation. Only linear quantisation causes an even spread of the error but
in conjunction with the SZ3 predictor it manages to keep the majority of values
beneath half the error bound.

4.6 Lossy Comunication
To reduce the amount of data sent in every iteration we compress the communication
data (PageRank updates) before sending them. A problem here is that this can break
the convergence of PageRank. Since the amount of total amount of PageRank is
no longer guaranteed 1. We noticed that simply removing/adding the missing value
will not always fix the problem with convergence. To insure convergence we switch
back to normal communication after a certain convergence threshold is reached or
when we no longer converge. We measure the time needed for communication each
iteration to see the effect of lossy communication. In Table 4.2 we see that lossy
communication ends up slows down the total communication. The overhead for
compression and decompression is larger then the time it takes to send the data.
The actual sending of data is substantially faster (around 30%).

Lossy
Communication Communication Compression Decompression

Time BA 0.42s 0.3s 1.7s 1.7s
Time GNM 0.34s 0.22s 0.25s 0.31s

Table 4.2: Average Time for communication each iteration
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5. Conclusion

After trying different checkpointless methods (DivideEven, BasedOnInEdges, Local
Iterations) as well as writing uncompressed and compressed checkpoints, to increase
PageRanks fault tolerance for fail-stop errors. We think that both checkpointless
approaches and lossy compressed checkpoints are a good way to make PageRank
more fault tolerant. The checkpointless approach Divide Even outperforms restart-
ing by 40 ∼ 50%. The lack of overhead makes Divide Even useful for systems with
high mean time between failures compared to the expected runtime of the PageR-
ank instances. Since for a MTBF µ that is 50.5 times the runtime of the PageRank
instance, Divide Even is expected to outperform a 1% checkpoint overhead. Making
Divide Even useful in systems that have a high MTBF compared to the expected
runtime of the PageRank instances. But for systems with low MTBF compared
to the run time of the PageRank instances writing checkpoints is useful. Using
checkpointless approaches in the beginning we can reduce the checkpoint overhead
by around 40%. The checkpointless approaches performance also depends on how
much vertices are lost due to a failure, meaning they could potentially work even bet-
ter for larger systems, assuming the failures cause us to loose less a smaller fraction
of the data. The checkpoints compressed with ZFP have around 40% less overhead
compared to uncompressed checkpoints and performed equally in case of a failure.
The use of differential checkpoints with strongly compressed secondary checkpoints
reduces the checkpoint overhead by another 16% compared to using only ZFP.
Future Work: It remains to be seen if the checkpointless methods can be used in
other converging algorithms to decrease the checkpoint overhead. Since the check-
pointless methods rely on the properties of PageRank. There is also the question how
the performance of these methods scales with the amount of data lost. It would also
be interesting to see if the use of differential checkpoint with strongly compressed
secondary checkpoints is useful in other converging algorithms since the secondary
checkpoints work as an update function on the most changes values.



Bibliography
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