Tutorial: Algorithm Engineering for Big Data

Peter Sanders, Karlsruhe Institute of Technology

Efficient algorithms are at the heart of any nontrivial cot@puwapplication. But how can we
obtain innovative algorithmic solutions for demanding laggiion problems with exploding input
sizes using complex modern hardware and advanced algacitbomniques?

This tutorial proposes algorithm engineering as a mettaggofor taking all these issues into
account. Algorithm engineering tightly integrates modgJialgorithm design, analysis, imple-
mentation and experimental evaluation into a cycle resemlthe scientific method used in the
natural sciences. Reusable, robust, flexible, and effioleptementations are put into algorithm
libraries. Benchmark instances provide further couplmgpplications.

- (realistic -
algquthm ‘ models ‘ P)
engineering *f/ {ﬁg{ﬂs #_

/ design - — %

YV /falsifiable =

analysis hypotheses | experiments j*— O

inducti Q

deduction inauction ‘ —

. : :)

‘perf.- \‘ |mplementat|ony appl. engin. S

_guarantees |V wn
- algorithm—- |

Jibraries -

We begin with examples representing fundamental algostand data structures with a par-
ticular emphasis on large data sets. We first lookoating in detail. Then we will have shorter
examples foffull text indices, priority queue data structures,oute planning, graph partition-
ing, andminimum spanning trees. We will also give examples of future challenges centered
on particular big data applications likegnome sequencing and phylogenetic tree reconstruction,
particletracking at the CERN LHC, and the SAP-HAN#data base,

Further Information
Duration: half-day

Intended Audience: Practitioners with some basic background in algorithmsl @mester com-
puter science in most German universities)

Slides are attached. Some images with unclear copyright are resinove

KIT

Karlsruhe Institute of Technology

Algorithm Engineering for Big Data

Peter Sanders

atics - Algorithmics

(realistic
models

algorithm
engineering -

design

falsifiable
hypotheses
induction

analysis

suonesijdde

deduyction
g (perf.— ‘ ° appl. engin.
g \guarantees | ¥
5 S algorithm- |
- }%blocks libraries | L)

Y)
—ping disk scheduling overlap—

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Sanders: Algorithm Engineering / Big Data

Overview

| A detailed explanation of algorithm engineering
with sorting for (more or less) big inputs

as a throughgoing example

[] More Big Data examples from my group

[with: David Bader, Veit Batz, Andreas Beckmann, Timo Bingmann, Stefan
Burkhardt, Jonathan Dees, Daniel Delling, Roman Dementiev, Daniel Funke,
Robert Geisberger, David Hutchinson, Juha Karkkainen, Lutz Kettner, Moritz
Kobitzsch, Nicolai Leischner, Dennis Luxen, Kurt Mehlhorn, Ulrich Meyer,
Henning Meyerhenke, Rolf Mdhring, Ingo Mdller, Petra Mutzel, Vitaly Osipov,
Felix Putze, Glnther Quast, Mirko Rahn, Dennis Schieferdecker, Sebastian
Schlag, Dominik Schultes, Christian Schulz, Jop Sibeyn, Johannes Singler,
Jeff Vitter, Dorothea Wagner, Jan Wassenberg, Martin Weidner, Sebastian

Winkel, Emmanuel Ziegler]

Sanders: Algorithm Engineering / Big Data

Algorithmics

— the systematic design of efficient software and hardware

computer science

algorithmics m efficient

theoretical
[p211onId

Sanders: Algorithm Engineering / Big Data

(Caricatured) Traditional View: Algorithm Theory

(models)
'
[design } ; T

Theory | Practice

. y
[analyss] Gmplementation]

‘ deduction *

[perf. guarantees j [applications j

Sanders: Algorithm Engineering / Big Data

Gaps Between Theory & Practice

Theory — Practice
simple ﬁ appl. model complex
simple % machine model real
complex algorithms FOR simple
advanced W data structures [T arrays,. ..
worst case | MaX | | complexity measure inputs

o) 42% | constant factors

asympt.

efficiency

Sanders: Algorithm Engineering / Big Data

Algorithmics as Algorithm Engineering

/ algorithm (modds J

engineering
design]
?
[analysis |] ? [experiments]
deduction ?

perf.—
guarantees

[1]

Sanders: Algorithm Engineering / Big Data

Algorithmics as Algorithm Engineering

algorithm (models J
engineering i

/(design
! falsifiable

hypotheses experiments]

Induction
Implementation

[analysis

dedtiction

perf.—
guarantees

[1]

Sanders: Algorithm Engineering / Big Data

Algorithmics as Algorithm Engineering

s algorlthm {rea“StiC }

: . models
engineering *
/(real. design
falsifiable

[real. analyéis hypotheses experiments]

_ Induction
dedtictlon
Implementation

perf.—
guarantees

[1]

Sanders: Algorithm Engineering / Big Data

Algorithmics as Algorithm Engineering

i : realistic
algorithm "8EE
engineering i {fea }

Inputs
/(design l
! falsifiable

[analysis hypotheses experiments]
dedtiction induction

oerf.— Implementation

{guarantees *

libraries

{algorithm— }

[1]

Sanders: Algorithm Engineering / Big Data

Algorithmics as Algorithm Engineering

-

[1]

algorithm | *24Sie
engineering real
* Inputs Q
/(design %
, falsifiable 4 —
[analysis hypotheses experiments 8
. Induction —
dedtictlon % . O
oerf— W Implementation# appl. engin. T
guarantees *
algorithm- 7
libraries —

10

Sanders: Algorithm Engineering / Big Data

Goals

| bridge gaps between theory and practice

|| accelerate transfer of algorithmic results into applications

| keep the advantages of theoretical treatment:

generality of solutions and

reliabiltiy, predictabilty from performance guarantees

-

algorithm
engineering

N

realistic
models real B
Inputs

/(design
, falsifiable 4
[analysis hypotheses experiments }4—
deddetion induction
perf - implementationy# appl. engin.
guarantees *
algorithm—- |

libraries |

suoneoldde

11

Sanders: Algorithm Engineering / Big Data

Bits of History

1843— Algorithms in theory and practice
1950s,1960s Still infancy

1970s,1980s Paper and pencil algorithm theory.

Exceptions exist, e.g., [D. Johnson]

1986 Term used by [T. Beth],

lecture “Algorithmentechnik” in Karlsruhe.

1988- Library of Efficient Data Types and Algorithms
(LEDA) [2]

1997— Workshop on Algorithm Engineering
~~ ESA applied track [G. Italiano]

1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]
1998 Alex workshop in Italy ~~ ALENEX

12

Sanders: Algorithm Engineering / Big Data

Realistic Models

Theory <—— Practice
simple ﬁ appl. model complex
simple % machine model real

[| Careful refinements

] Try to preserve (partial) analyzability / simple results

13

Sanders: Algorithm Engineering / Big Data

Sorting — Model

Comparison arbitrary
based e.g. integer

Oy AN

true/false full iInformation

Sanders: Algorithm Engineering / Big Data

15

Advanced Machine Models [3]

RAM /von Neumann External

P

<
‘l
o
) / R
y 5
e &2 &
F g ' o |".
v il i "

registers

T

registers

| L
i fast memory

00 :> capacity M
freely programmable freely programmable

] E

‘ large memory

count instructions (also) count (block) I/Os

[3]

Sanders: Algorithm Engineering / Big Data

Distributed Memory

?J

»

?J

?%J

1

2

[4]

?J

P

(also) determine communication volume

16

Sanders: Algorithm Engineering / Big Data

Parallel Disks

?J

M

éls

i

[5]

17

Sanders: Algorithm Engineering / Big Data

Set Associative Caches ?_/ [6]
?‘_/ M
BB

OO ‘>

B cache
__— cache sets

|:::::| |ZZZZZ| AN I |a:2

cache lines of the memory main memof

Sanders: Algorithm Engineering / Big Data

Branch Prediction

?&f

»

[7]

19

Sanders: Algorithm Engineering / Big Data

Hierarchical Parallel External Memory

. . multicore MPI
®0O 0O dsks

[8]

20

Sanders: Algorithm Engineering / Big Data

Graphics Processing Units

[9]

21

Sanders: Algorithm Engineering / Big Data 22
Combininig Models?

| design / analyze one aspect at a time

] hierarchical combination

[autotuning ?

Comparison arbitrary
based e.g. integer
1 2 || P

cache

— < — mmEmn b

i / (C4AARMAIN —— cache sets
true/false full information Lt b AL la=2
) —

| &
cache lines of the memory main memor

Sanders: Algorithm Engineering / Big Data

Design

of algorithms that work well in practice
L] simplicity

L] reuse

| constant factors

| exploit easy instances

23

Sanders: Algorithm Engineering / Big Data

Design — Sorting

L] simplicity -

L] reuse disk scheduling, prefetching,

load balancing, sequence partitioning [10, 5, 11, 8]

| constant factors detailed machine model-

(caches, TLBs, reqisters, branch prediction, ILP) [3, 7]

[] instances randomization for difficult instances [5, 8]

24

Sanders: Algorithm Engineering / Big Data 25

Example: External Sorting [12]
n: input size registers
| LU
M internal memory size fast memory
I3 block size capacity M

freely programmable

] E

large memory

Sanders: Algorithm Engineering / Big Data 26

Procedure externalMerge(a, b, ¢ :File of Element)
T = a.readElement /I Assume emptyFile.readElement—= o0
y := b.readElement
for j:=1to |a| + |b] do
if - < ythen c.writeElement(x); x := a.readElement

else c.writeElement(y); ¥ := b.readElement

C

Sanders: Algorithm Engineering / Big Data

External Binary Merging

read file a: =~ |a|/B.
read file b: =~ |b|/B.
write file ¢: =~ (|a| + |b])/B.

overall:
_lal + 1o

B

27

Sanders: Algorithm Engineering / Big Data

Run Formation

Sort input pieces of size M

I=M 1=2M

sort: internal

=M 1=2M

M
¢ =0
run
t 1=0

n
1/0s: ~ 2—
B

28

Sanders: Algorithm Engineering / Big Data
Sorting by External Binary Merging

make things as_sinple_as _possible bu t_no_sinpler

> formRuns < > formRuns < > formRuns < > formRuns <

__aeghikmmst _ aaeilnpsss _ aaeil npsss __ eil moprst
merge merge
____aaaeeghi i kl mmpsssst _____bbeei il | moopprssstu
merge
aaabbeeeeghiiii Kkl Il mmmnooppprsssssssttu
Procedure externalBinaryMergeSort Il 110s: =~
run formation Il 2n/B
. n
while more than one run left do Il ﬂog Hw X
Il 2n/B

merge pairs of runs
output remaining ru . O

29

Sanders: Algorithm Engineering / Big Data

Example Numbers: PC 2013

n = 2% Byte (1 TB)

M = 233 Byte (8 GB)

B = 2?2 Byte (4 MB)

one 1/0 needs 27° s (31.25 ms)

time —22 (1 + {lo ﬁ]) . 27%g
—“B 5V

=2.2'% . (1 +7)-27°s = 2"s ~ 36h

Idea: 8 passes ~~ 2 passes

30

Sanders: Algorithm Engineering / Big Data

Multiway Merging

Procedure multiwayMerge(ay, - . . , ag, ¢ :File of Element)
for 2:=1to kdo z;:= a;.readElement
. k
for j:=1to > ., |a;| do
find 2 € 1..k that minimizes z; // no 1/0s!, O(log k) time

c.writeElement(z;)

T, .= a;.readElement

inte?rnal buffers

31

Sanders: Algorithm Engineering / Big Data 32
Mulitway Merging — Analysis

intelfrne puffer

/Os: read file a;: = |a;|/B.
write file c: = S°F_ |a;|/B

overall;

<% 22’&:1 ‘az‘ ---------------
- B

constraint: We need k + 1 buffer blocks, i.e., k +1 < M /B

Sanders: Algorithm Engineering / Big Data

Sorting by Multiway-Merging

[sort [n/M | runs with M elements each 2n /B 110s

[J merge M /B runs at a time 2n/B 1/0s

| unit a single run remains X [logM/B %W merging phases
2n n

overall sort(n) 1= 5 (1 + {logM/B MW) /0s

make things_ as sinple_as _possible bu t _no_sinpler
> formRuns < > formRuns < > formRuns < > formRuns <
__aeghi kmmst _ aaeil npsss _ aaeil npsss el | mopr st
multi merge
aaabbeeeeghiiii Kkl Il mmmnooppprsssssssttu

33

Sanders: Algorithm Engineering / Big Data

External Sorting by Multiway-Merging

More than one merging phase?:

Not for the hierarchy main memory, hard disk.

>2000 ~200

N

r N\

N .
M RAM Euro/ bit
- = ;
B Platte Euro/bit

reason.

34

Sanders: Algorithm Engineering / Big Data 35

More on Multiway Mergesort — Parallel Disks

[] Randomized Striping [5]
| Optimal Prefetching [5]
] Overlapping of I/O and Computation [10]
Ny o 1
~—|= | read buffers
N —|| Y 3
NES SIE =03
= ® 1> k+O(D) 2 3
8 || || & == overlap buffert > - | &/
O : - o @
S k= c
ol c =R
V§ owlocks | : '
merging

| |
—ping disk scheduling overlap-

Sanders: Algorithm Engineering / Big Data

Shared Memory Multiway Mergesort

[11]

36

Sanders: Algorithm Engineering / Big Data

Combinations

parallel disk + shared memory: [13]

-+ distributed memory: [8] stay tuned

load balancing, randomization, collective communication

-+ energy: [14] stay tuned

. . multicore

® 00O disks

Sanders: Algorithm Engineering / Big Data

Analysis

[] Constant factors matter

| Beyond worst case analysis

| Practical algorithms might be difficult to analyze

(randomization, meta heuristics,...)

38

Sanders: Algorithm Engineering / Big Data 39

Analysis — Sorting

AN
N—
N— 3
D
—| | =
|| = Q
\ 2 ||| 8=z overlap B |@
= |23 S
@ - 1| 8
. =
N —
[] Constant factors matter (1 4 o(1))xlower bound
[5, 8] I/Os for parallel (disk) external sorting

| Beyond worst case analysis

| Practical algorithms might be difficult to analyze Open Problem:

[5] greedy algorithm for parallel disk prefetching [Knuth@48]

Sanders: Algorithm Engineering / Big Data

Implementation

sanity check for algorithms !

Challenges

Semantic gaps:

40

Abstract algorithm
<

Ch... A
<

hardware

Small constant factors:

compare highly tuned competitors

S

yolajaid

(1]

overlap

yebiaw

JE)

Sanders: Algorithm Engineering / Big Data 41

Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

voi d findO acl esAndCount (const T* const a,
const int n, const int k, const T+ const s,
Oracl ex const oracle, intx const bucket) {

{ for (int 1 =0;, 1 <n; 1++)
Int | = 1;
while (j < k) {)/ |
_— s, 1 Splitter o rray index

J =1=*2 + (ali] >s[]]); §//*2 C 47\ decisions
} S;/z 63

bucket [b] ++; S| [54]]5| |5 6| |77
> </N> </ \> </\> decisions

oracle[l] = b;

} THE00D gL ==

Sanders: Algorithm Engineering / Big Data 42

Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

void findO acl esAndCountUnrol led([...]){

for (int 1 =0; 1 <n; 1|++)
Int | = 1;
} = px2 o (al > sH; /// splitter
b=z (el > st f//*2541 * Zecisi(?;?yindex
] =]*2 + (a[i] > s[]]); Sg/z(S 3 -
j = j*2 + (alil >s[jl); /2 \Wu § 2 \(u decisions
int b =j-k; S1(a| [s3]5] |5 6] | %77
bucket [b] ++; S/ \ z& </\> <//\> decisions

i1 = b: buckets

oracle[i] = b; JI. LJ{!ﬁ%\

bl

Sanders: Algorithm Engineering / Big Data 43

Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

void findO acl esAndCount Unrol l ed2([...]){

for (int 1 =n &1l 1 <n;, 1+=2) {\
Iint O = 1; Iint j1 = 1;

T ai0 =a[i]; Tal = a[i+l];

j0=) 0*x2+(ai 0>s[j0]); 1= 1x2+(ail>s[]1])

]0=) 0x2+(ai 0>s[j0]); J1l=1+x2+(ail>s[]1]);

j0=) 0*2+(ai 0>s[j0]); 1l 1x2+(ail>s[j1])

j0=j0*2+(ai 0>s[j0]); 1= 1x2+(ail>s[)1])

int b0 = jO-k; int bl = j1-k;
bucket [bO] ++; bucket [bl] ++;
oracle[i] = bO; oracle[l+1] = Dbil,

bl

Sanders: Algorithm Engineering / Big Data

Experiments

[] sometimes a good surrogate for analysis
[] too much rather than too little output data
| reproducibility (10 years!)

[] software engineering

44

Sanders: Algorithm Engineering / Big Data

Example, Parallel External Sorting

sort 100GiB per node

45

[10]

4000
3000 r /// /
3 2000 EE=—% —1
worst case input ——
1000 L worst case input, randorr_uzed —— |
random input ——
0 random input, randomized —=—
1 2 4 8 16 32 64

nodes

Sanders: Algorithm Engineering / Big Data 46

Algorithm Libraries — Challenges

| software engineering , e.g. CGAL [www.cgal.org]
| standardization, e.g. java.util, C++ STL and BOOST
] performance > generality > simplicity
|| applications are a priori unknown

STL-user layer (Streaming layer

|| result checking, verification

i . vector, stack, set : : ;
Confainers: ity qleus. map Pipelined sorting,
LAlgon’rhms: sort, for_each, merge zero-1/O scanning)

A

f ™)
; Block management layer
>< typed block, block manager, buffered streams,
: | |_ g block prefetcher, buffered block writer
Extensions W —
Asynchronous /O primitives layer

files, I/O requests, disk queues,
completion handlers

Parallel STL Algorithms

Sanders: Algorithm Engineering / Big Data

Example: External Sorting [10, 15]

STL-user layer i Streaming layer

' . vector, stack, set . : :

Algorithms: sort for_each, merge L zero—1/O scanning

R

I e Y

> Block management layer §;

: < typed block, block manager, buffered streams, |

| & L block prefetcher, buffered block writer é:

i € Asynchronous 1I/O primitives layer) i

: files, /O requests, disk queues, Linux

.) . Windows
| completion handlers ' Mac

Sanders: Algorithm Engineering / Big Data

Example: Shared Memory Sorting

STL-alike < STL-integrated

48

Sanders: Algorithm Engineering / Big Data

Problem Instances

Benchmark instances for NP-hard problems
L] TSP

| Steiner-Tree

[] SAT

] set covering

| graph partitioning
L] ...

have proved essential for development of practical algorithms

Strange: much less real world instances for polynomial problems

(MST, shortest path, max flow, matching...)

49

Sanders: Algorithm Engineering / Big Data

Example: Sorting Benchmark (Indy) [8, 14]

100 byte records, 10 byte random keys, with file 1/0
Category data volume performance | improvement
GraySort 100 TB 564 GB / min 17X
MinuteSort 955 GB 955 GB / min > 10x
JouleSort 1 000 GB | 13 400 Recs/Joule 4 %
JouleSort 100 GB | 35 500 Recs/Joule 3 X
JouleSort 10 GB | 34 300 Recs/Joule 3 X

Also: PennySort

50

Sanders: Algorithm Engineering / Big Data

GraySort: inplace multiway mergesort, exact splitting [9]

16 GB Infiniband switch
RAM 400 MB / s node all-all

Sanders: Algorithm Engineering / Big Data 52

JouleSort

] Intel Atom N330

L] 4 GB RAM

[] 4%x256 GB
SSD (SuperTalent)

e
s —

o

ZO0 HSEXS95Id 1+

Algorithm similarto | T~
g]

GraySort ey

-~ o) . ,
A

aay

FO HSZXDI5d 1
NITVI s

Sanders: Algorithm Engineering / Big Data 53

Applications that “Change the World”

Algorithmics has the potential to SHAPE applications
(not just the other way round) [G. Myers]

Bioinformatics: sequencing, proteomics, phylogenetic trees,. ..
Information Retrieval: Searching, ranking,

Traffic Planning: navigation, flow optimization,

adaptive toll, disruption management

Geographic Information Systems: agriculture, environmental protection,

disaster management, tourism,. ..

Communication Networks: mobile, P2P, grid, selfish users,. ..

Sanders: Algorithm Engineering / Big Data

- .
AE for Big Data Applications
/T hni sensor data
echniques B —
data structures
data bases
graphs N
geometry
strings GIS_
: mobile
coding theory -
&)
4 ™
Technology
parallelism
memory hierarchies
communication
fault tolerance experience
Kenergy y PS

54

Sanders: Algorithm Engineering / Big Data

Larger Sorting Problems

] millions of processors

~~ multipass algorithms
[] fault tolerance
L] still energy ~ time?

Higly related to MapReduce, index construction,...

55

Sanders: Algorithm Engineering / Big Data

More Big Data Examples From my Group

[| Suffix Sorting and its applications
[| Main Memory Data Bases

I Graph Partitioning

] Track Reconstruction at CERN

| Route Planning

[]| Genome Sequencing

[] Image Processing

] Priority Queues

56

Sanders: Algorithm Engineering / Big Data

Suffix Sorting

sort suffixes s; - - - s,, of string
S =51 8,8 €{l..n}.

Applications: full text search,

Burrows-Wheeler text compression, bioinformatics,. . .

E.g. phrase search in time logarithmic

or even independent of input size.

~~ particularly interesting for large data

DSV S|V T

WWW

57

a
ana
anana
banana
na
nana

"to be or yot to be"

Sanders: Algorithm Engineering / Big Data

Linear Work Suffix Sorting [18]

simple: Radix-Sort + linear recursion 4+ merging.
~ trivial external [19], parallel [20] adaptation

012345678
| anananas.

napnanawmass.q

2 2 3 4 5
lexicographic triple names

nananas. 0| sort 00
1

3 2 5 <=1
|ananas.0§:::?>
2 4 1

' 329241

Sanders: Algorithm Engineering / Big Data

Current Work

| distributed memory (external) query

| parallel distributed construction of query data structure

(longest common prefixes,...)

59

Sanders: Algorithm Engineering / Big Data 60

Data Bases — Our Approach [21, 22]

forward
Index

[with SAP HANA team, PhD students Dees, Miller] inverted

[] main memory based index

[] column based
I many-core machines

[] NUMA-aware

| no precomputed aggregates

] aggressive indexing

] generate C++ code close to tuned manual implementation

Sanders: Algorithm Engineering / Big Data

TPC-H Decision Support Benchmark

] 22 realistic queries of varying complexity

] pseudorealistic random data

] F GByte space

TPC—-H Scheme

6M*F

LINEITEM

0099909000000

09990009

800K*F PARTSUPPJ ORDERS
000)

10K*F | || SUPPLIER | |CUSTOMER
00000

099000

200K*F |PART

NATION |25
0

00000990)
F = scale factor
o =attribute

REGION | 5
M

1.0M*F
150K*F

Sanders: Algorithm Engineering / Big Data 62

Typical TPC-H Queries

Q1: Revenue etc. of all shipped LINEITEMs
(aggregated into 6 categories)

~~ plain flat scan of all LINEITEMs

Q9: Sum profit for all LINEITEMs with a given color

for each nation and order year.

s scan PARTS. prlce../.’\ | ITEM\ -
use inverted index cost PART/éU‘Y‘S J ORDERS

to access matching LINEITEMs (X}O |l 00000000)

Go down from there natior SU/PPLIE CUSTOMER
using forward indices (=pointers). (XXX}O \ R

color|pART | [NATION | name
00000000 09)
REGION

Sanders: Algorithm Engineering / Big Data

First Results

63

[21]

[] ~ 30 x faster than current record in 300GB category
(manual implementation)

] Compiler: seems to be largely orthogonal to algorithmic and
parallelization issues

TPC—-H Scheme

6M*F
800K™F
10K™F
200K™F

F = scale factor
o =attribute

REGION
M

LINEITEM
U000
PARTSUPP ORDERS | 1.5M*F
00)OI
SUPPLIER | | CUSTOMER | 150K*F
0000 00000
PART | |NATION |25
000000 0

5

Sanders: Algorithm Engineering / Big Data

Larger Inputs

[Already needed by some

large customers of SAP

] Move to clusters
Master thesis Martin Weidner
seems to give positive results
(5 TPC-H queries) [22]

[] fault tolerance
beyond recovery? R
e o o o

| energy efficiency using many small nodes (ARM)?

Algorithmic Meat: Randomization, collective communication,
communication complexity, sorting, data structures, multi-level memory

hierarchies, coding theory

Sanders: Algorithm Engineering / Big Data 65

Graph Partitionierung [23, 24]

Input: Graph (V, E/) (possibly with node and edge weights), €, k
Vi

Objective Function: minimize cut
Applications: finite element simulations, VLSI-design, route planning,...

Variants : hypergraphs, clustering, different objective functions,. ..

Sanders: Algorithm Engineering / Big Data 66

Multilevel Graph Partitioning

=) (3
graph }

local improvement

e

contract §O” A uncontract

partitioning

Sanders: Algorithm Engineering / Big Data
Reengineering Multilevel Graph Partitioning

- D
distr. ,
evol. Alg. z
[Alenex12] o

s
~

[ESA11]

W \/\/\/\/ WW Cycles a la multigrid

(=) (A
graph }

lPDPSlO] local improvement A parallel [IPDPSI0]

d
(reat?negs } n—level [ESA1Q]
malch flows etc. [ESA11]
augm. paths
[SEA13]

contract ¢ A uncontract

[SEAL12Z] initial
f= (e

partitioning todo
=

\
NS

Sanders: Algorithm Engineering / Big Data 68

Our Contribution

|| scalable parallelization KaPPa

(matching, edge coloring, evolutionary)

| thorough reengineering of multilevel approch
(use flows, SCCs, BFS, matching, edge coloring,

negative cycle detection, ...)

~~ high quality (e.g. 90-99%

entries in Walshaw’s benchmark)

~ edge cut 10264 %

Sanders: Algorithm Engineering / Big Data

Large Data Graph Partitioning

L] difficult inputs: social networks, WWW, 3D/4D models, VLSI,

knowledge graph?

L] more difficult parallelization

69

Sanders: Algorithm Engineering / Big Data
Future Work

|| parallel external
|| other variants
[] fault tolerant

[] component of a graph processing framework

70

Sanders: Algorithm Engineering / Big Data 71

Track reconstruction [25]

Input: clouds of ~ 10* 3D points
Output: < 103 spiral tracks of high energy particles

Also cluster tracks by emergence point
Large Data???

] up to 10° instances / s

| cost of processors / energy

] memory constrained

| exploit SIMD/GPU parallelism?

Algorithmic Meat:

Geometric data structures, parallelization, clustering

Sanders: Algorithm Engineering / Big Data 72

Route Planning

Large Data 2004: Western European network
(18M nodes).

Dijkstra’s algorithm needs 0s.

[| too much time for servers

] too much memory for mobile devices

~~ Inaccurate heuristics with tedious “manual preprocessing”

Our contribution: Automatic preprocessing techniques
1 10*-10° times faster exact query on servers

L] still “instantaneous” on mobile devices (external implementation)

Sanders: Algorithm Engineering / Big Data

Large Data 2013

[] 1.6G nodes OpenStreetMap routing graph (edge based)

] billions of GPS traces

(4 road based sensors + elevation data)
] public transportation

Potential use:

[| time-dependent edge weights [27]
[| detailed traffic jam detection Google, TomTom,...
] multi-modal route planning [28]
| probabilistic route planning attempts
L] really useful detours around traffic jams 27?7

use real time traffic simulation??

Sanders: Algorithm Engineering / Big Data

Genome Sequencing

[29]: 20 000 CPU hours for shotgun sequencing of the human genome
(3 - 10 base pairs, 5-10 times oversampling.

Prototypical large data problem?

Today: a few minutes on a work station [ZieglerDFMS work in progr.]
(use template, modern hardware, AE + cheap sequencing)

~ routine use for personal medicine

New Challenge:

processing many sequences

74

Sanders: Algorithm Engineering / Big Data

Phylogenetic Tree Reconstruction

75

Sanders: Algorithm Engineering / Big Data

Image Processing

Gigapixel aerial images.

Filters, Segmentation, Change detection

Algorithmic meat: Graph algorithms, parallelization, memory

hierarchies, range minimum data structures,. ..

[30]

76

Sanders: Algorithm Engineering / Big Data

External Priority Queues

Problem: Binary heaps need
@(1 —n)I/O deleteMi
O S per deleteiviin
g V P

We would rather have:
© —1] —n /0O mortized
Og s S (amortze

77

Sanders: Algorithm Engineering / Big Data

Medium Size PQs — km < M?*/B Insertions

sorted
1 |2 ... k|| m sequences
B
k—mer Insertion
\/QM ?/ buffer PQ

Insert: Initially into insertion buffer.
Overflow —

sort; flush; smallest key is now in merge PQ

Delete-Min: deleteMin from the PQ with smaller min

78

Sanders: Algorithm Engineering / Big Data

Large Queues

2n n

I/Os for n, insertiosn

O(nlogn) Arbeit.
[31].

deleteMin:
“amortisiert umsonst”.

)

79

Sequence Heap Priority Queues group 3
= external
m Swapped group 2
— cached o T K
roup 1 x
group " 9
X X
l I l 1 (2|... |k||m [1] [2]...|kl|m
T 1 1 _T 1 T
—mer T, k—mer T, kK—mer T3
group- group-— group-
buffer 1 m buffer 2 m buffer 3| || m
R—-merge

deletion buffer

|
?%insertion buffer

Sanders: Algorithm Engineering / Big Data

Experiments

Keys: random 32 bit integers

Associated information: 32 dummy bits

Deletion buffer size: 32 Near optimal
Group buffer size: 256 . performance on
Merging degree k: 128 all machines tried!

Compiler flags: Highly optimizing, nothing advanced

Operation Sequence:

(Insert-DeleteMin-Insert)" (DeleteMin-Insert-DeleteMin)"

Near optimal performance on all machines tried!

80

Sanders: Algorithm Engineering / Big Data

Alpha-21164, 533 MHz

(T(deleteMin) + T(insert))/log N [ns]

140 | | | T | | 1
bottom up binary heap --© --
bottom up aligned 4-ary heap ---%---
120 = sequence heap - Jo
O
- o —
100 o
Pog o X
80 |- @__@/.@/@ DI
§ 99 o O X
60 F (.. K- K-k ¥ oKX —
"E*"-B-..El
E---E.__B o
40 [R e 06
20 - -
0 | | | | | | | 1
256 1024 4096 16384 65536 218 020 22,23

N

81

Sanders: Algorithm Engineering / Big Data

Core2 Duo Notebook, 1.?7?? GHz

82

25 I I I I

: I & -
bottom up binary heap --©-- PR
) sequence heap -3 ©
-~ 20 - ! -
o ‘/
ke /
5 15 | O -
m /
= /
=
+
| _O--6_. _ —
I/E\ 10(9_@/8- @ @"'@—-‘@""@’ ‘@
= [H---.. R -
3] gL S R e DO
ko IS R =R o Rz B O
o) 5 |- —
2
c
0 | | | | | | |
1024 4096 16384 65536 28 220 222 %3

N

Sanders: Algorithm Engineering / Big Data

Future Work

] see above
| find more algorithmic application problems

|| algorithmic cores of application independent libraries and tools

data structures, MapReduce, graphs, data bases,...
| distributed memory external algorithms
| back to massive parallelism including exascale

[] fault tolerance

83

Sanders: Algorithm Engineering / Big Data

Commercial Break

| am hiring

PhD students, Postdocs in algorithm engineering.
Desirable Skills:

| Desire to bridge gaps between theory and practice
L] Algorithmics
| Performance oriented C++ programming

| Parallelization, e.g., MPI, OpenMP.. ..

84

Sanders: Algorithm Engineering / Big Data 85

Literatur

[1]

[2]
[3]
[4]

[5]

[6]
[7]

(8]

[9]

(10]

(11]

[12]

(13]

P. Sanders. Algorithm engineering — an attempt at a definition. In Efficient Algorithms, volume 5760 of LNCS, pages 321-340. Springer,
2009.

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999.
U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies, volume 2625 of LNCS Tutorial. Springer, 2003.

Peter Sanders, Sebastian Schlag, and Ingo Miller. Communication efficient algorithms for fundamental big data problems. In IEEE Int.
Conf. on Big Data, 2013.

D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between prefetching and queued writing with parallel disks. SIAM Journal on
Computing, 34(6):1443-1463, 2005.

K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory. Algorithmica, 35(1):75-93, 2003.

P. Sanders and S. Winkel. Super scalar sample sort. In 12th European Symposium on Algorithms, volume 3221 of LNCS, pages
784—796. Springer, 2004.

M. Rahn, P. Sanders, and J. Singler. Scalable distributed-memory external sorting. In 26th IEEE International Conference on Data
Engineering, pages 685688, 2010.

N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. CoRR, abs/0909.5649, 2009. submitted for publication.

R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 138-148, San Diego, 2003.

J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library. In 13th International Euro-Par Conference,
volume 4641 of LNCS, pages 682-694. Springer, 2007.

K. Mehlhorn and P. Sanders. Algorithms and Data Structures — The Basic Toolbox. Springer, 2008.

A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined external memory algorithm library. In 23rd IEEE International
Symposium on Parallel and Distributed Processing, pages 1-10, 2009.

Sanders: Algorithm Engineering / Big Data 86

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]
(25]

[26]

A. Beckmann, U. Meyer, P. Sanders, and J. Singler. Energy-efficient sorting using solid state disks. In 1st International Green
Computing Conference, pages 191-202. IEEE, 2010.

R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template Library for XXL data sets. Software Practice & Experience,
38(6):589-637, 2008.

J. Singler and B. Kosnik. The libstdc++ parallel mode: Software engineering considerations. In International Workshop on Multicore
Software Engineering (IWMSE), 2008.

David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors. Graph Partitioning and Graph Clustering — 10th
DIMACS Implementation Challenge Workshop, volume 588 of Contemporary Mathematics. American Mathematical Society, 2013.

J. Kéarkkainen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. Journal of the ACM, 53(6):1-19, 2006.

R. Dementiev, J. Karkkainen, J. Mehnert, and P. Sanders. Better external memory suffix array construction. ACM Journal of
Experimental Algorithmics, 12, 2008. Special issue on Alenex 2005.

F. Kulla and P. Sanders. Scalable parallel suffix array construction. Parallel Computing, 33:605-612, 2007. Special issue on Euro
PVM/MPI 2006, distinguished paper.

Jonathan Dees and Peter Sanders. Efficient many-core query execution in main memory column-stores. In 29th IEEE Conference on
Data Engineering, 2013.

Martin Weidner, Jonathan Dees, and Peter Sanders. Fast olap query execution in main memory on large data in a cluster. In IEEE Int.
Conf. on Big Data, 2013.

Vitaly Osipov, Peter Sanders, and Christian Schulz. Engineering graph partitioning algorithms. In 11th International Symposium on
Experimental Algorithms (SEA), volume 7276 of LNCS, pages 18—-26. Springer, 2012.

Christian Schulz. High Quality Graph Partitioning. PhD thesis, Karlsruhe Institute of Technology, 2013.
Daniel Funke. Parallel triplet finding for particle track reconstruction. Master’s thesis, Karlsruhe Institute of Technology, 2013.

D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms. In Algorithmics of Large and Complex
Networks, volume 5515 of LNCS State-of-the-Art Survey, pages 117-139. Springer, 2009.

Sanders: Algorithm Engineering / Big Data 87

[27]

(28]

[29]

(30]

(31]

Gernot Veit Batz and Peter Sanders. Time-dependent route planning with generalized objective functions. In 20th European Symposium
on Algorithme (ESA), volume 7501 of LNCS, pages 169-180. Springer, 2012.

Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing in
very large public transportation networks using transfer patterns. In 18th European Symposium on Algorithms, volume 6346 of LNCS,
pages 290-301, 2010.

J Craig Venter. Sequencing the human genome. In Proceedings of the sixth annual international conference on Computational biology,
pages 309-309. ACM, 2002.

Jan Wassenberg. Efficient Algorithms for Large-Scale Image Analysis. PhD thesis, Karlsruhe Institute of Technology, 2011.

P. Sanders. Fast priority queues for cached memory. ACM Journal of Experimental Algorithmics, 5, 2000.

