Tutorial: Algorithm Engineering for Big Data

Peter Sanders, Karlsruhe Institute of Technology

Efficient algorithms are at the heart of any nontrivial cot@puwapplication. But how can we
obtain innovative algorithmic solutions for demanding laggiion problems with exploding input
sizes using complex modern hardware and advanced algacitbomniques?

This tutorial proposes algorithm engineering as a mettaggofor taking all these issues into
account. Algorithm engineering tightly integrates modgJialgorithm design, analysis, imple-
mentation and experimental evaluation into a cycle resemlthe scientific method used in the
natural sciences. Reusable, robust, flexible, and effioleptementations are put into algorithm
libraries. Benchmark instances provide further couplmgpplications.
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We begin with examples representing fundamental algostand data structures with a par-
ticular emphasis on large data sets. We first lookoating in detail. Then we will have shorter
examples foffull text indices, priority queue data structures,oute planning, graph partition-
ing, andminimum spanning trees. We will also give examples of future challenges centered
on particular big data applications likegnome sequencing and phylogenetic tree reconstruction,
particletracking at the CERN LHC, and the SAP-HAN#data base,

Further Information
Duration: half-day

Intended Audience: Practitioners with some basic background in algorithmsl @mester com-
puter science in most German universities)

Slides are attached. Some images with unclear copyright are resinove
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Overview

| A detailed explanation of algorithm engineering
with sorting for (more or less) big inputs

as a throughgoing example

[ ] More Big Data examples from my group

[with: David Bader, Veit Batz, Andreas Beckmann, Timo Bingmann, Stefan
Burkhardt, Jonathan Dees, Daniel Delling, Roman Dementiev, Daniel Funke,
Robert Geisberger, David Hutchinson, Juha Karkkainen, Lutz Kettner, Moritz
Kobitzsch, Nicolai Leischner, Dennis Luxen, Kurt Mehlhorn, Ulrich Meyer,
Henning Meyerhenke, Rolf Mdhring, Ingo Mdller, Petra Mutzel, Vitaly Osipov,
Felix Putze, Glnther Quast, Mirko Rahn, Dennis Schieferdecker, Sebastian
Schlag, Dominik Schultes, Christian Schulz, Jop Sibeyn, Johannes Singler,
Jeff Vitter, Dorothea Wagner, Jan Wassenberg, Martin Weidner, Sebastian

Winkel, Emmanuel Ziegler]
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Algorithmics

— the systematic design of efficient software and hardware

computer science

algorithmics m efficient

theoretical
[p211onId
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(Caricatured) Traditional View: Algorithm Theory
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Gaps Between Theory & Practice

Theory — Practice
simple ﬁ appl. model complex
simple % machine model real
complex algorithms FOR simple
advanced W data structures [T arrays,. ..
worst case | MaX | | complexity measure inputs

o) 42% | constant factors

asympt.

efficiency
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Algorithmics as Algorithm Engineering
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Algorithmics as Algorithm Engineering
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Algorithmics as Algorithm Engineering

s algorlthm {rea“StiC }
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Algorithmics as Algorithm Engineering

i : realistic
algorithm  "8EE
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/( design l
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Algorithmics as Algorithm Engineering

-
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Goals

| bridge gaps between theory and practice

|| accelerate transfer of algorithmic results into applications

| keep the advantages of theoretical treatment:

generality of solutions and

reliabiltiy, predictabilty from performance guarantees

-
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engineering
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Bits of History

1843— Algorithms in theory and practice
1950s,1960s Still infancy

1970s,1980s Paper and pencil algorithm theory.

Exceptions exist, e.g., [D. Johnson]

1986 Term used by [T. Beth],

lecture “Algorithmentechnik” in Karlsruhe.

1988- Library of Efficient Data Types and Algorithms
(LEDA) [2]

1997— Workshop on Algorithm Engineering
~~ ESA applied track [G. Italiano]

1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]
1998 Alex workshop in Italy ~~ ALENEX

12
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Realistic Models

Theory <—— Practice
simple ﬁ appl. model complex
simple % machine model real

[ | Careful refinements

] Try to preserve (partial) analyzability / simple results

13
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Sorting — Model

Comparison arbitrary
based e.g. integer

Oy AN

true/false full iInformation
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15

Advanced Machine Models [3]

RAM /von Neumann External

P

<
‘l
o
) / R
y 5
e &2 &
F g ' o |".
v il i "

registers

T

registers

| L
i fast memory

00 :> capacity M
freely programmable freely programmable

] E

‘ large memory

count instructions (also) count (block) I/Os

[3]
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Distributed Memory

?J

»

?J

?%J

1

2

[4]

?J

P

(also) determine communication volume
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Parallel Disks

?J

M

éls

i

[5]
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Set Associative Caches ?\_/ [6]
?‘\_/ M
BB

OO ‘>

B cache
__— cache sets

|:::::| |ZZZZZ| AN I |a:2

cache lines of the memory main memof
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Branch Prediction

?&f

»

[7]

19
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Hierarchical Parallel External Memory

. . multicore MPI
®0O 0O dsks

[8]

20
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Graphics Processing Units

[9]

21
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Combininig Models?

| design / analyze one aspect at a time

] hierarchical combination

[ autotuning ?

Comparison arbitrary
based e.g. integer
1 2 || P

cache

— < — mmEmn b

i / (C4AARMAIN —— cache sets
true/false full information Lt b AL la=2
) —

| &
cache lines of the memory main memor
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Design

of algorithms that work well in practice
L] simplicity

L] reuse

| constant factors

| exploit easy instances

23
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Design — Sorting

L] simplicity -

L] reuse disk scheduling, prefetching,

load balancing, sequence partitioning [10, 5, 11, 8]

| constant factors detailed machine model-

(caches, TLBs, reqisters, branch prediction, ILP) [3, 7]

[ ] instances randomization for difficult instances [5, 8]

24
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Example: External Sorting [12]
n: input size registers
| LU
M internal memory size fast memory
I3 block size capacity M

freely programmable

] E

large memory
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Procedure externalMerge(a, b, ¢ :File of Element)
T = a.readElement /I Assume emptyFile.readElement—= o0
y := b.readElement
for j:=1to |a| + |b] do
if - < ythen  c.writeElement(x); x := a.readElement

else c.writeElement(y); ¥ := b.readElement

C
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External Binary Merging

read file a: =~ |a|/B.
read file b: =~ |b|/B.
write file ¢: =~ (|a| + |b])/B.

overall:
_lal + 1o

B

27
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Run Formation

Sort input pieces of size M

I=M 1=2M

sort: internal

=M 1=2M

M
¢ =0
run
t 1=0

n
1/0s: ~ 2—
B

28
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Sorting by External Binary Merging

make things as_sinple_as _possible bu t_no_sinpler

> formRuns < > formRuns < > formRuns < > formRuns <

__aeghikmmst _ aaeilnpsss _ aaeil npsss __ eil moprst
merge merge
____aaaeeghi i kl mmpsssst _____bbeei il | moopprssstu
merge
aaabbeeeeghiiii Kkl Il mmmnooppprsssssssttu
Procedure externalBinaryMergeSort Il 110s: =~
run formation Il 2n/B
. n
while more than one run left do Il ﬂog Hw X
Il 2n/B

merge pairs of runs
output remaining ru . O

29
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Example Numbers: PC 2013

n = 2% Byte (1 TB)

M = 233 Byte (8 GB)

B = 2?2 Byte (4 MB)

one 1/0 needs 27° s (31.25 ms)

time —22 (1 + {lo ﬁ]) . 27%g
—“B 5V

=2.2'% . (1 +7)-27°s = 2"s ~ 36h

Idea: 8 passes ~~ 2 passes

30
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Multiway Merging

Procedure multiwayMerge(ay, - . . , ag, ¢ :File of Element)
for 2:=1to kdo z;:= a;.readElement
. k
for j:=1to > ., |a;| do
find 2 € 1..k that minimizes z;  // no 1/0s!, O(log k) time

c.writeElement(z; )

T, .= a;.readElement

inte?rnal buffers

31
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Mulitway Merging — Analysis

intelfrne puffer

/Os: read file a;: = |a;|/B.
write file c: = S°F_ |a;|/B

overall;

<% 22’&:1 ‘az‘ ---------------
- B

constraint: We need k + 1 buffer blocks, i.e., k +1 < M /B
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Sorting by Multiway-Merging

[ sort [n/M | runs with M elements each 2n /B 110s

[J merge M /B runs at a time 2n/B 1/0s

| unit a single run remains X [logM/B %W merging phases
2n n

overall sort(n) 1= 5 (1 + {logM/B MW) /0s

make things_ as sinple_as _possible bu t _no_sinpler
> formRuns < > formRuns < > formRuns < > formRuns <
__aeghi kmmst _ aaeil npsss _ aaeil npsss el | mopr st
multi merge
aaabbeeeeghiiii Kkl Il mmmnooppprsssssssttu

33
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External Sorting by Multiway-Merging

More than one merging phase?:

Not for the hierarchy main memory, hard disk.

>2000 ~200

N

r N\

N .
M RAM Euro/ bit
- = ;
B Platte Euro/bit

reason.

34
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More on Multiway Mergesort — Parallel Disks

[ ] Randomized Striping [5]
| Optimal Prefetching [5]
] Overlapping of I/O and Computation [10]
Ny o 1
~—|= | read buffers
N —|| Y 3
NES SIE =03
= ® 1> k+O(D) 2 3
8 || || & == overlap buffert > - | &/
O : - o @
S k= c
ol c =R
_V_§ owlocks | : '
merging

| |
—ping disk scheduling overlap-
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Shared Memory Multiway Mergesort

[11]

36
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Combinations

parallel disk + shared memory: [13]

-+ distributed memory: [8] stay tuned

load balancing, randomization, collective communication

-+ energy: [14] stay tuned

. . multicore

® 00O disks
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Analysis

[ ] Constant factors matter

| Beyond worst case analysis

| Practical algorithms might be difficult to analyze

(randomization, meta heuristics,...)

38
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Analysis — Sorting

AN
N—
N— 3
D
—| | =
|| = Q
\ 2 ||| 8=z overlap B |@
= |23 S
@ - 1| 8
. =
N —
[] Constant factors matter (1 4 o(1))xlower bound
[5, 8] I/Os for parallel (disk) external sorting

| Beyond worst case analysis

| Practical algorithms might be difficult to analyze Open Problem:

[5] greedy algorithm for parallel disk prefetching [Knuth@48]
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Implementation

sanity check for algorithms !

Challenges

Semantic gaps:

40

Abstract algorithm
<

Ch... A
<

hardware

Small constant factors:

compare highly tuned competitors

S

yolajaid

(1]

overlap

yebiaw

JE)




Sanders: Algorithm Engineering / Big Data 41

Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

voi d findO acl esAndCount (const T* const a,
const int n, const int k, const T+ const s,
Oracl ex const oracle, intx const bucket) {

{ for (int 1 =0;, 1 <n; 1++)
Int | = 1;
while (j < k) { )/ |
_— s, 1 Splitter o rray index

J =1=*2 + (ali] >s[]]); §//*2 C 47\ decisions
} S;/z 63

bucket [ b] ++; S| [54]]5| |5 6| |77
> </N> </ \> </\> decisions

oracle[l] = b;

} THE00D gL ==
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Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

void findO acl esAndCountUnrol led([...]){

for (int 1 =0; 1 <n; 1|++)
Int | = 1;
} = px2 o (al > sH; /// splitter
b=z (el > st f//*2541 * Zecisi(?;?yindex
] = ]*2 + (a[i] > s[]]); Sg/z( S 3 -
j = j*2 + (alil >s[jl); /2 \Wu § 2 \(u decisions
int b =j-k; S1(a| [s3]5] |5 6] | %77
bucket [ b] ++; S/ \ z& </\> <//\> decisions

i1 = b: buckets

oracle[i] = b; JI. LJ{!ﬁ%\

bl



Sanders: Algorithm Engineering / Big Data 43

Example: Inner Loops Sample Sort [7]
tenpl ate <class T>

void findO acl esAndCount Unrol l ed2([...]){

for (int 1 =n &1l 1 <n;, 1+=2) {\
Iint O = 1; Iint j1 = 1;

T ai0 =a[i]; Tal = a[i+l];

j0=) 0*x2+(ai 0>s[j0]); 1= 1x2+(ail>s[]1])

]0=) 0x2+(ai 0>s[j0]); J1l=1+x2+(ail>s[]1]);

j0=) 0*2+(ai 0>s[j0]); 1l 1x2+(ail>s[j1])

j0=j0*2+(ai 0>s[j0]); 1= 1x2+(ail>s[)1])

int b0 = jO-k; int bl = j1-k;
bucket [ bO] ++; bucket [ bl] ++;
oracle[i] = bO; oracle[l+1] = Dbil,

bl
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Experiments

[ ] sometimes a good surrogate for analysis
[ ] too much rather than too little output data
| reproducibility (10 years!)

[ ] software engineering

44
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Example, Parallel External Sorting

sort 100GiB per node

45

[10]

4000
3000 r /// /
3 2000 EE=—% —1
worst case input ——
1000 L worst case input, randorr_uzed —— |
random input ——
0 random input, randomized —=—
1 2 4 8 16 32 64

nodes
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Algorithm Libraries — Challenges

| software engineering , e.g. CGAL [www.cgal.org]
| standardization, e.g. java.util, C++ STL and BOOST
] performance > generality > simplicity
|| applications are a priori unknown

STL-user layer ( Streaming layer

|| result checking, verification

i . vector, stack, set : : ;
Confainers: ity qleus. map Pipelined sorting,
LAlgon’rhms: sort, for_each, merge zero-1/O scanning )

A

f ™)
; Block management layer
>< typed block, block manager, buffered streams,
: | |_ g block prefetcher, buffered block writer
Extensions W —
Asynchronous /O primitives layer

files, I/O requests, disk queues,
completion handlers

Parallel STL Algorithms
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Example: External Sorting [10, 15]

STL-user layer i Streaming layer

' . vector, stack, set . : :

Algorithms: sort for_each, merge L zero—1/O scanning

R

I e Y

> Block management layer §;

: < typed block, block manager, buffered streams, |

| & L block prefetcher, buffered block writer é:

i € Asynchronous 1I/O primitives layer ) i

: files, /O requests, disk queues,  Linux

. ) . Windows
| completion handlers ' Mac
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Example: Shared Memory Sorting

STL-alike < STL-integrated

48
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Problem Instances

Benchmark instances for NP-hard problems
L] TSP

| Steiner-Tree

[ ] SAT

] set covering

| graph partitioning
L] ...

have proved essential for development of practical algorithms

Strange: much less real world instances for polynomial problems

(MST, shortest path, max flow, matching...)

49
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Example: Sorting Benchmark (Indy) [8, 14]

100 byte records, 10 byte random keys, with file 1/0
Category data volume performance | improvement
GraySort 100 TB 564 GB / min 17X
MinuteSort 955 GB 955 GB / min > 10x
JouleSort 1 000 GB | 13 400 Recs/Joule 4 %
JouleSort 100 GB | 35 500 Recs/Joule 3 X
JouleSort 10 GB | 34 300 Recs/Joule 3 X

Also: PennySort

50
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GraySort: inplace multiway mergesort, exact splitting [9]

16 GB Infiniband switch
RAM 400 MB / s node all-all
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JouleSort

] Intel Atom N330

L] 4 GB RAM

[ ] 4%x256 GB
SSD (SuperTalent)

e
s —

o

ZO0 HSEXS95Id 1+

Algorithm similarto | T~
g ]

GraySort ey

-~ o ) . ,
A

aay

FO HSZXDI5d 1
NITVI s
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Applications that “Change the World”

Algorithmics has the potential to SHAPE applications
(not just the other way round) [G. Myers]

Bioinformatics: sequencing, proteomics, phylogenetic trees,. ..
Information Retrieval: Searching, ranking,

Traffic Planning: navigation, flow optimization,

adaptive toll, disruption management

Geographic Information Systems: agriculture, environmental protection,

disaster management, tourism,. ..

Communication Networks: mobile, P2P, grid, selfish users,. ..
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- .
AE for Big Data Applications
/T hni sensor data
echniques B —
data structures
data bases
graphs N
geometry
strings GIS_
: mobile
coding theory -
& )
4 ™
Technology
parallelism
memory hierarchies
communication
fault tolerance experience
Kenergy y PS

54
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Larger Sorting Problems

] millions of processors

~~ multipass algorithms
[ ] fault tolerance
L] still energy ~ time?

Higly related to MapReduce, index construction,...

55
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More Big Data Examples From my Group

[ | Suffix Sorting and its applications
[ | Main Memory Data Bases

I Graph Partitioning

] Track Reconstruction at CERN

| Route Planning

[ ]| Genome Sequencing

[ ] Image Processing

] Priority Queues

56



Sanders: Algorithm Engineering / Big Data

Suffix Sorting

sort suffixes s; - - - s,, of string
S =51 8,8 €{l..n}.

Applications: full text search,

Burrows-Wheeler text compression, bioinformatics,. . .

E.g. phrase search in time logarithmic

or even independent of input size.

~~ particularly interesting for large data

DSV S|V T

WWW

57

a
ana
anana
banana
na
nana

"to be or yot to be"
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Linear Work Suffix Sorting [18]

simple: Radix-Sort + linear recursion 4+ merging.
~ trivial external [19], parallel [20] adaptation

012345678
| anananas.

napnanawmass.q

2 2 3 4 5
lexicographic triple names

nananas. 0| sort 00
1

3 2 5 <=1
|ananas.0§:::?>
2 4 1

' 329241
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Current Work

| distributed memory (external) query

| parallel distributed construction of query data structure

(longest common prefixes,...)

59
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Data Bases — Our Approach [21, 22]

forward
Index

[with SAP HANA team, PhD students Dees, Miller] inverted

[ ] main memory based index

[ ] column based
I many-core machines

[ ] NUMA-aware

| no precomputed aggregates

] aggressive indexing

] generate C++ code close to tuned manual implementation
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TPC-H Decision Support Benchmark

] 22 realistic queries of varying complexity

] pseudorealistic random data

] F GByte space

TPC—-H Scheme

6M*F

LINEITEM

0099909000000

09990009

800K*F PARTSUPPJ ORDERS
000)

10K*F | || SUPPLIER | |CUSTOMER
00000

099000

200K*F |PART

NATION |25
0

00000990)
F = scale factor
o =attribute

REGION | 5
M

1.0M*F
150K*F
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Typical TPC-H Queries

Q1: Revenue etc. of all shipped LINEITEMs
(aggregated into 6 categories)

~~ plain flat scan of all LINEITEMs

Q9: Sum profit for all LINEITEMs with a given color

for each nation and order year.

s scan PARTS. prlce../.’\ | ITEM\ -
use inverted index cost PART/éU‘Y‘S J ORDERS

to access matching LINEITEMs (X}O |l 00000000)

Go down from there natior SU/PPLIE CUSTOMER
using forward indices (=pointers). (XXX}O \ R

color|pART | [NATION | name
00000000 09)
REGION
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First Results

63

[21]

[ ] ~ 30 x faster than current record in 300GB category
(manual implementation)

] Compiler: seems to be largely orthogonal to algorithmic and
parallelization issues

TPC—-H Scheme

6M*F
800K™F
10K™F
200K™F

F = scale factor
o =attribute

REGION
M

LINEITEM
U000
PARTSUPP ORDERS | 1.5M*F
00 )OI
SUPPLIER | | CUSTOMER | 150K*F
0000 00000
PART | |NATION |25
000000 0

5
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Larger Inputs

[ Already needed by some

large customers of SAP

] Move to clusters
Master thesis Martin Weidner
seems to give positive results
(5 TPC-H queries) [22]

[] fault tolerance
beyond recovery? R
e o o o

| energy efficiency using many small nodes (ARM)?

Algorithmic Meat: Randomization, collective communication,
communication complexity, sorting, data structures, multi-level memory

hierarchies, coding theory
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Graph Partitionierung [23, 24]

Input: Graph (V, E/) (possibly with node and edge weights), €, k
Vi

Objective Function: minimize cut
Applications: finite element simulations, VLSI-design, route planning,...

Variants : hypergraphs, clustering, different objective functions,. ..
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Multilevel Graph Partitioning

=) (3
graph }

local improvement

e

contract §O” A uncontract

partitioning
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Reengineering Multilevel Graph Partitioning

- D
distr. ,
evol. Alg. z
[Alenex12] o

s
~

[ESA11]

W \/\/\/\/ WW Cycles a la multigrid

(=) (A
graph }

lPDPSlO] local improvement A parallel [IPDPSI0]

d
(reat?negs } n—level [ESA1Q]
malch flows etc. [ESA11]
augm. paths
[SEA13]

contract ¢ A uncontract

[SEAL12Z] initial
f= (e

partitioning todo
=

\
NS
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Our Contribution

|| scalable parallelization KaPPa

(matching, edge coloring, evolutionary)

| thorough reengineering of multilevel approch
(use flows, SCCs, BFS, matching, edge coloring,

negative cycle detection, ...)

~~ high quality (e.g. 90-99%

entries in Walshaw’s benchmark)

~ edge cut 10264 %
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Large Data Graph Partitioning

L] difficult inputs: social networks, WWW, 3D/4D models, VLSI,

knowledge graph?

L] more difficult parallelization

69
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Future Work

|| parallel external
|| other variants
[ ] fault tolerant

[ ] component of a graph processing framework

70
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Track reconstruction [25]

Input: clouds of ~ 10* 3D points
Output: < 103 spiral tracks of high energy particles

Also cluster tracks by emergence point
Large Data???

] up to 10° instances / s

| cost of processors / energy

] memory constrained

| exploit SIMD/GPU parallelism?

Algorithmic Meat:

Geometric data structures, parallelization, clustering
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Route Planning

Large Data 2004: Western European network
(18M nodes).

Dijkstra’s algorithm needs 0s.

[ | too much time for servers

] too much memory for mobile devices

~~ Inaccurate heuristics with tedious “manual preprocessing”

Our contribution:  Automatic preprocessing techniques
1 10*-10° times faster exact query on servers

L] still “instantaneous” on mobile devices (external implementation)
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Large Data 2013

[ ] 1.6G nodes OpenStreetMap routing graph (edge based)

] billions of GPS traces

(4 road based sensors + elevation data)
] public transportation

Potential use:

[ | time-dependent edge weights [27]
[ | detailed traffic jam detection Google, TomTom,...
] multi-modal route planning [28]
| probabilistic route planning attempts
L] really useful detours around traffic jams 27?7

use real time traffic simulation??
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Genome Sequencing

[29]: 20 000 CPU hours for shotgun sequencing of the human genome
(3 - 10 base pairs, 5-10 times oversampling.

Prototypical large data problem?

Today: a few minutes on a work station [ZieglerDFMS work in progr.]
(use template, modern hardware, AE + cheap sequencing)

~ routine use for personal medicine

New Challenge:

processing many sequences
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Phylogenetic Tree Reconstruction
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Image Processing

Gigapixel aerial images.

Filters, Segmentation, Change detection

Algorithmic meat: Graph algorithms, parallelization, memory

hierarchies, range minimum data structures,. ..

[30]
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External Priority Queues

Problem: Binary heaps need
@(1 —n)I/O deleteMi
O S per deleteiviin
g V P

We would rather have:
© —1 ] —n /0O mortized
Og s S (amortze
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Medium Size PQs — km < M?*/B Insertions

sorted
1 |2 ... k|| m sequences
B
k—mer Insertion
\/QM ?/ buffer PQ

Insert: Initially into insertion buffer.
Overflow —

sort; flush; smallest key is now in merge PQ

Delete-Min: deleteMin from the PQ with smaller min
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Large Queues

2n n

I/Os for n, insertiosn

O(nlogn) Arbeit.
[31].

deleteMin:
“amortisiert umsonst”.

)
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Sequence Heap Priority Queues group 3
= external
m Swapped group 2
— cached o T K
roup 1 x
group " 9
X X
l I l 1 (2|... |k||m [1] [2]...|kl|m
T 1 1 _T 1 T
—mer T, k—mer T, kK—mer T3
group- group-— group-
buffer 1 m buffer 2 m buffer 3| || m
R—-merge

deletion buffer

|
?%insertion buffer
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Experiments

Keys: random 32 bit integers

Associated information: 32 dummy bits

Deletion buffer size: 32 Near optimal
Group buffer size: 256 . performance on
Merging degree k: 128 all machines tried!

Compiler flags: Highly optimizing, nothing advanced

Operation Sequence:

(Insert-DeleteMin-Insert )" (DeleteMin-Insert-DeleteMin )"

Near optimal performance on all machines tried!
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Alpha-21164, 533 MHz

(T(deleteMin) + T(insert))/log N [ns]

140 | | | T | | 1
bottom up binary heap --© --
bottom up aligned 4-ary heap ---%---
120 = sequence heap - Jo
O
- o —
100 o
Pog o X
80 |- @__@/.@/@ DI
§ 99 o O X
60 F (.. K- K-k ¥ oKX —
"E*"-B-..El
E---E.__B o
40 [ R e 06
20 - -
0 | | | | | | | 1
256 1024 4096 16384 65536 218 020 22,23

N
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Core2 Duo Notebook, 1.?7?? GHz
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Future Work

] see above
| find more algorithmic application problems

|| algorithmic cores of application independent libraries and tools

data structures, MapReduce, graphs, data bases,...
| distributed memory external algorithms
| back to massive parallelism including exascale

[ ] fault tolerance
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Commercial Break

| am hiring

PhD students, Postdocs in algorithm engineering.
Desirable Skills:

| Desire to bridge gaps between theory and practice
L] Algorithmics
| Performance oriented C++ programming

| Parallelization, e.g., MPI, OpenMP.. ..
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